

 D

F

G

Н

M

CONTENTS

Alphabetical Index9 PRECAUTIONS 17 Precautions for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TEN-SIONER" 17 On Board Diagnostic (OBD) System of Engine and A/T 17 Wiring Diagrams and Trouble Diagnosis 20 PREPARATION 21 Special Service Tools21 ENGINE CONTROL SYSTEM23 Vacuum Hose Drawing24 Nissan Torque Demand (NTD) Control System 29 Fuel Cut Control (at No Load and High Engine CAN Communication 30 BASIC SERVICE PROCEDURE 32 Idle Speed/Ignition Timing/Idle Mixture Ratio Accelerator Pedal Released Position Learning 44 Throttle Valve Closed Position Learning 44 Idle Air Volume Learning 44 Fuel Pressure Check 46 ON BOARD DIAGNOSTIC (OBD) SYSTEM 49 Introduction49 Two Trip Detection Logic49 Emission-Related Diagnostic Information 50 IVIS (Infiniti Vehicle Immobilizer System — NATS).. 64 Malfunction Indicator Lamp (MIL) 64 OBD System Operation Chart 68

I ROUBLE DIAGNOSIS	
Trouble Diagnosis Introduction	
DTC Inspection Priority Chart	
Fail-Safe Chart	
Basic Inspection	
Symptom Matrix Chart	
Engine Control Component Parts Location	
Circuit Diagram	
ECM Harness Connector Terminal Layout	
ECM Terminals and Reference Value	
CONSULT-II Function (ENGINE)	
Generic Scan Tool (GST) Function	
CONSULT-II Reference Value in Data Monitor Mod	
Maile Octobrilla Defendance Octobrilla Defendance	. 123
Major Sensor Reference Graph in Data Monitor	400
ModeTROUBLE DIAGNOSIS - SPECIFICATION VALUI	126 - 420
Description	I∠0 120
Testing Condition	
Inspection Procedure Diagnostic Procedure	
TROUBLE DIAGNOSIS FOR INTERMITTENT INC	
DENT	
Description	
Diagnostic Procedure	
POWER SUPPLY AND GROUND CIRCUIT	
Wiring Diagram	
Diagnostic Procedure	
Ground Inspection	
Component Inspection	
DTC U1000, U1001 CAN COMMUNICATION LINE	Ξ 143
Description	
On Board Diagnosis Logic	143
DTC Confirmation Procedure	143
Wiring Diagram	144
Diagnostic Procedure	
DTC P0011, P0021 IVT CONTROL	
Description	
CONSULT-II Reference Value in Data Monitor Mod	
	. 147

On Board Diagnosis Logic	147	Wiring Diagram	195
DTC Confirmation Procedure	148	Diagnostic Procedure	196
Wiring Diagram		Component Inspection	197
Diagnostic Procedure	152	Removal and Installation	
Component Inspection		DTC P0122, P0123 TP SENSOR	199
Removal and Installation		Component Description	
DTC P0031, P0032, P0051, P0052 HO2S1 HEAT	ER 157	CONSULT-IIReference Value in Data Monito	rMode
Description			.199
CONSULT-II Reference Value in Data Monitor Mo	ode	On Board Diagnosis Logic	199
	. 157	DTC Confirmation Procedure	200
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		Component Inspection	
Diagnostic Procedure		Removal and Installation	
Component Inspection		DTC P0125 ECT SENSOR	
Removal and Installation		Component Description	
DTC P0037, P0038, P0057, P0058 HO2S2 HEAT		On Board Diagnosis Logic	
Description		DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor Mo	ode	Diagnostic Procedure	
	. 165	Component Inspection	
On Board Diagnosis Logic		Removal and Installation	
DTC Confirmation Procedure		DTC P0127 IAT SENSOR	
Wiring Diagram		Component Description	
Diagnostic Procedure		On Board Diagnosis Logic	
Component Inspection		DTC Confirmation Procedure	
Removal and Installation		Diagnostic Procedure	
DTC P0101 MAF SENSOR		Component Inspection	
Component Description		Removal and Installation	
CONSULT-IIReference Value in Data Monitor Mo		DTC P0128 THERMOSTAT FUNCTION	
0.5.15:	. 174	On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Diagnostic Procedure	
Overall Function Check		Component Inspection	
Wiring Diagram		Removal and Installation	
Diagnostic Procedure		DTC P0132, P0152 HO2S1	
Component Inspection Removal and Installation		Component DescriptionCONSULT-IIReference Value in Data Monito	
DTC P0102, P0103 MAF SENSOR		CONSULT-ITRETETETICE VALUE IT DATA MOTITO	.214
		On Board Diagnosis Logic	
Component DescriptionCONSULT-II Reference Value in Data Monitor Mo		DTC Confirmation Procedure	
CONSOLI-III reference value in Data Worldon Wo	. 182	Wiring Diagram	
On Board Diagnosis Logic	_	Diagnostic Procedure	
DTC Confirmation Procedure		Component Inspection	
Wiring Diagram		Removal and Installation	
Diagnostic Procedure		DTC P0133, P0153 HO2S1	
Component Inspection		Component Description	
Removal and Installation		CONSULT-II Reference Value in Data Monito	
DTC P0112, P0113 IAT SENSOR		CONCOL! Interested value in Batamerine	.224
Component Description		On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Overall Function Check	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
Component Inspection		Component Inspection	
Removal and Installation		Removal and Installation	
DTC P0117, P0118 ECT SENSOR		DTC P0134, P0154 HO2S1	
Component Description		Component Description	
On Board Diagnosis Logic		CONSULT-IIReference Value in Data Monito	
DTC Confirmation Procedure			.236

=0	
_	ι.
)

D

F

F

G

Н

M

. 292

DTC Confirmation Procedure	237	On Board Diagnosis Logic	292
Overall Function Check		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	294
Diagnostic Procedure		Diagnostic Procedure	
Component Inspection		Component Inspection	
Removal and Installation		Removal and Installation	
DTC P0138, P0158 HO2S2		DTC P0300 - P0308 NO. 8 - 1 CYLINDER MISF	
Component Description		MULTIPLE CYLINDER MISFIRE	
CONSULT-II Reference Value in Data Monitor Mo		On Board Diagnosis Logic	
	. 245	DTC Confirmation Procedure	
On Board Diagnosis Logic	_	Diagnostic Procedure	
DTC Confirmation Procedure		DTC P0327, P0328, P0332, P0333 KS	
Wiring Diagram		Component Description	
Diagnostic Procedure		On Board Diagnosis Logic	
Component Inspection		DTC Confirmation Procedure	
Removal and Installation		Wiring Diagram	
DTC P0139, P0159 HO2S2		Diagnostic Procedure	
Component Description		Component Inspection	
CONSULT-II Reference Value in Data Monitor Mo		Removal and Installation	
CONSOLI-II Reference value in Data Monitor Mo	. 254	DTC P0335 CKP SENSOR (POS)	
On Poord Diagnosis Logic	_	Component Description	
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor N	
DTC Confirmation Procedure		CONSULT-ITREFERENCE VALUE IT DATA MIONITORN	
Overall Function Check		On Board Diagnosis Logic	. 309
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Wiring Diagram	
Removal and Installation		Diagnostic Procedure	
DTC P0171, P0174 FUEL INJECTION SYSTEM		Component Inspection	
FUNCTION		Removal and Installation	
On Board Diagnosis Logic		DTC P0340 CMP SENSOR (PHASE)	
DTC Confirmation Procedure		Component Description	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
DTC P0172, P0175 FUEL INJECTION SYSTEM		Wiring Diagram	
FUNCTION		Diagnostic Procedure	
On Board Diagnosis Logic		Component Inspection	
DTC Confirmation Procedure		Removal and Installation	321
Wiring Diagram		DTC P0420, P0430 THREE WAY CATALYST FU	
Diagnostic Procedure		TION	
DTC P0181 FTT SENSOR		On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	
On Board Diagnosis Logic		Overall Function Check	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		DTC P0441 EVAP CONTROL SYSTEM	
Diagnostic Procedure		System Description	
Component Inspection	287	On Board Diagnosis Logic	
Removal and Installation		DTC Confirmation Procedure	
DTC P0182, P0183 FTT SENSOR	288	Overall Function Check	328
Component Description		Diagnostic Procedure	329
On Board Diagnosis Logic	288	DTC P0442 EVAP CONTROL SYSTEM	333
DTC Confirmation Procedure	288	On Board Diagnosis Logic	333
Wiring Diagram	289	DTC Confirmation Procedure	
Diagnostic Procedure		Diagnostic Procedure	335
Component Inspection		Component Inspection	
Removal and Installation		DTC P0444, P0445 EVAP CANISTER PURGE	
DTC P0222, P0223 TP SENSOR		UME CONTROL SOLENOID VALVE	
Component Description		Description	342
CONSULT-II Reference Value in Data Monitor Mo		CONSULT-II Reference Value in Data Monitor N	

	. 342	Component Description	394
On Board Diagnosis Logic	343	On Board Diagnosis Logic	394
DTC Confirmation Procedure	343	DTC Confirmation Procedure	394
Wiring Diagram	344	Wiring Diagram	395
Diagnostic Procedure	345	Diagnostic Procedure	396
Component Inspection	347	Removal and Installation	398
Removal and Installation	347	DTC P0500 VSS	399
DTC P0447 EVAP CANISTER VENT CONTR	OL	Description	399
VALVE	348	On Board Diagnosis Logic	399
Component Description	348	DTC Confirmation Procedure	399
CONSULT-II Reference Value in Data Monitor I		Overall Function Check	400
	. 348	Diagnostic Procedure	400
On Board Diagnosis Logic	348	DTC P0506 ISC SYSTEM	401
DTC Confirmation Procedure		Description	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Diagnostic Procedure	
DTCP0452EVAPCONTROLSYSTEMPRESS		DTC P0507 ISC SYSTEM	
SENSOR		Description	
Component Description		On Board Diagnosis Logic	
CONSULT-II Reference Value in Data Monitor N		DTC Confirmation Procedure	
	. 355	Diagnostic Procedure	
On Board Diagnosis Logic		DTC P0550 PSP SENSOR	
DTC Confirmation Procedure		Component Description	
Wiring Diagram		CONSULT-IIReference Value in Data Mor	
Diagnostic Procedure		CONCOLL III COLORO VALACIII DALA MOL	.405
Component Inspection		On Board Diagnosis Logic	
DTCP0453EVAPCONTROLSYSTEMPRESS		DTC Confirmation Procedure	
SENSOR		Wiring Diagram	
Component Description		Diagnostic Procedure	
CONSULT-II Reference Value in Data Monitor N		Component Inspection	
CONCOLI III CICIOLO VALGO II DALA MOI III OI I	. 362	Removal and Installation	
On Board Diagnosis Logic		DTC P0605 ECM	
DTC Confirmation Procedure		Component Description	
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Diagnostic Procedure	
DTC P0455 EVAP CONTROL SYSTEM		DTC P0650 MIL	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
DTC P0456 EVAP CONTROL SYSTEM		Wiring Diagram	
On Board Diagnosis Logic DTC Confirmation Procedure		Diagnostic Procedure	
		DTC P1065 ECM POWER SUPPLY	
Overall Function Check		Component Description	
Diagnostic Procedure		On Board Diagnosis Logic	
Component Inspection		DTC Confirmation Procedure	
DTC P0460 FUEL LEVEL SENSOR		Wiring Diagram	
Component Description		Diagnostic Procedure	
On Board Diagnosis Logic		DTC P1102 MAF SENSOR	
DTC Confirmation Procedure		Component Description	
Wiring Diagram		CONSULT-II Reference Value in Data Mor	
Diagnostic Procedure			.422
Removal and Installation		On Board Diagnosis Logic	
DTC P0461 FUEL LEVEL SENSOR		DTC Confirmation Procedure	
Component Description		Wiring Diagram	
On Board Diagnosis Logic		Diagnostic Procedure	
Overall Function Check		Component Inspection	
DTC P0462, P0463 FUEL LEVEL SENSOR.	394	Removal and Installation	427

ΞC	-
=\	
	= ()

Α

DTC Confirmation Procedure460

Wiring Diagram461

Diagnostic Procedure464

Component Inspection466

Component Description468

On Board Diagnosis Logic468

DTC Confirmation Procedure469

Overall Function Check470

Diagnostic Procedure470 Component Inspection472

Removal and Installation473

Component Description474

DTC P1144, P1164 HO2S1474

DTC P1143, P1163 HO2S1468

CONSULT-IIReference Value in Data Monitor Mode

\Box	
\cup	

г	-		

Ĺ	j	
Г	1	

	i		
ί,	J		

,		
ς.		
,		

1	V		

Diagnostic Procedure	437	CONSULT-IIReference Value in Data Monit	orMode
Component Inspection	438		. 474
Removal and Installation	439	On Board Diagnosis Logic	474
DTC P1121 ELECTRIC THROTTLE CONTROL		DTC Confirmation Procedure	475
ACTUATOR	440	Overall Function Check	476
Component Description	440	Diagnostic Procedure	476
On Board Diagnosis Logic	440	Component Inspection	478
DTC Confirmation Procedure	440	Removal and Installation	
Diagnostic Procedure	441	DTC P1146, P1166 HO2S2	481
DTC P1122 ELECTRIC THROTTLE CONTROL		Component Description	481
FUNCTION	442	CONSULT-II Reference Value in Data Monit	orMode
Description	442		. 481
On Board Diagnosis Logic	442	On Board Diagnosis Logic	481
DTC Confirmation Procedure	442	DTC Confirmation Procedure	
Wiring Diagram	443	Overall Function Check	482
Diagnostic Procedure	444	Wiring Diagram	484
Component Inspection		Diagnostic Procedure	
Remove and Installation		Component Inspection	
DTC P1124, P1126 THROTTLE CONTROL MOTO	OR	Removal and Installation	
RELAY	449	DTC P1147, P1167 HO2S2	493
Component Description	449	Component Description	493
CONSULT-II Reference Value in Data Monitor Mo	de	CONSULT-II Reference Value in Data Monit	orMode
	. 449		. 493
On Board Diagnosis Logic	449	On Board Diagnosis Logic	493
DTC Confirmation Procedure	449	DTC Confirmation Procedure	494
Wiring Diagram	451	Overall Function Check	494
Diagnostic Procedure	452	Wiring Diagram	496
Component Inspection	454	Diagnostic Procedure	500
DTC P1128 THROTTLE CONTROL MOTOR	455	Component Inspection	502
Component Description	455	Removal and Installation	
On Board Diagnosis Logic		DTC P1148, P1168 CLOSED LOOP CONT	ROL 505
DTC Confirmation Procedure		On Board Diagnosis Logic	505
Wiring Diagram	456	DTC Confirmation Procedure	505
Diagnostic Procedure	457	Overall Function Check	506
Component Inspection	458	Diagnostic Procedure	
Removal and Installation		DTC P1211 TCS CONTROL UNIT	507
DTC P1140, P1145 IVT CONTROL POSITION SE		Description	
SOR		On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor Mo	de	Diagnostic Procedure	
	. 460	DTC P1212 TCS COMMUNICATION LINE	
On Board Diagnosis Logic	460	Description	508
Revision: 2004 October	EC	2-5	2004 M45

. 428

DTC P1111, P1136 IVT CONTROL SOLENOID

VALVE 428

CONSULT-II Reference Value in Data Monitor Mode

Component Description 428

On Board Diagnosis Logic 428

DTC Confirmation Procedure 428

Wiring Diagram429

Component Inspection 433

TURE SENSOR 434

Component Description 434 On Board Diagnosis Logic434

DTC Confirmation Procedure 435

Wiring Diagram 436

DTC P1119 RADIATOR COOLANT TEMPERA-

On Board Diagnosis Logic	508		.552
DTC Confirmation Procedure	508	On Board Diagnosis Logic	552
Diagnostic Procedure	508	DTC Confirmation Procedure	553
DTC P1217 ENGINE OVER TEMPERATURE	509	Wiring Diagram	554
Description	509	Diagnostic Procedure	555
CONSULT-II Reference Value in Data Monitor Me	ode	Component Inspection	557
	.510	DTC P1448 EVAP CANISTER VENT CONTRO)L
On Board Diagnosis Logic	510	VALVE	558
Overall Function Check	511	Component Description	
Wiring Diagram		CONSULT-IIReference Value in Data Monitor M	1ode
Diagnostic Procedure			.558
Main 12 Causes of Overheating		On Board Diagnosis Logic	
DTC P1220 FUEL PUMP CONTROL MODULE		DTC Confirmation Procedure	558
(FPCM)		Overall Function Check	
Description		Wiring Diagram	
CONSULT-II Reference Value in Data Monitor Me	ode	Diagnostic Procedure	
	. 519	Component Inspection	
On Board Diagnosis Logic		DTC P1456 EVAP CONTROL SYSTEM	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Overall Function Check	
Component Inspection		Diagnostic Procedure	
DTC P1225 TP SENSOR		Component Inspection	
Component Description		DTC P1464 FUEL LEVEL SENSOR	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Removal and Installation		Wiring Diagram	
DTC P1226 TP SENSOR		Diagnostic Procedure	5/6
Component Description		Removal and Installation	
On Board Diagnosis Logic		DTC P1480 COOLING FAN SPEED CONTROL	
DTC Confirmation Procedure		SOLENOID VALVE	
Diagnostic Procedure		Description	
Removal and Installation		CONSULT-IIReference Value in Data Monitor M	
DTC P1229 SENSOR POWER SUPPLY		On Board Diagnosis Logic	.579
On Board Diagnosis Logic DTC Confirmation Procedure		On Board Diagnosis Logic DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
DTC P1442 EVAP CONTROL SYSTEM		Component Inspection	
On Board Diagnosis Logic		Removal and Installation	
DTC Confirmation Procedure		DTC P1490 VACUUM CUT VALVE BYPASS VAI	
Diagnostic Procedure		Description	
Component Inspection		CONSULT-II Reference Value in Data Monitor M	
DTC P1444 EVAP CANISTER PURGE VOLUM		CONCOLL INTOICION VAIGONI DALAMONILONI	.584
CONTROL SOLENOID VALVE		On Board Diagnosis Logic	
Description		DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor Me		Wiring Diagram	
CONCOLL III COLORONO VALGONI DAGAMENTO	.544	Diagnostic Procedure	
On Board Diagnosis Logic	_	Component Inspection	
DTC Confirmation Procedure		DTC P1491 VACUUM CUT VALVE BYPASS VAI	
Wiring Diagram		Description	
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor M	
Component Inspection			.590
Removal and Installation		On Board Diagnosis Logic	
DTC P1446 EVAP CANISTER VENT CONTRO		DTC Confirmation Procedure	
VALVE		Overall Function Check	
Component Description		Wiring Diagram	
CONSULT-II Reference Value in Data Monitor Mo		-	

=0	
_	ι.
)

D

Е

F

G

Н

Wiring Diagram	
Diagnostic Procedure	
Component Inspection	
Removal and Installation	
DTC P2138 APP SENSOR	
Component DescriptionCONSULT-IIReference Value in Data Monitor N	
CONSULT-ITREference value in Data Monitorio	. 634
On Board Diagnosis Logic	
DTC Confirmation Procedure	635
Wiring Diagram	
Diagnostic Procedure	637
Component Inspection	
Removal and Installation	
VARIABLE INDUCTION AIR CONTROL SYST	
(VIAS)	
Description	
CONSULT-IIReference Value in Data Monitor M	
	. 642
Wiring Diagram	643
Diagnostic Procedure	644
Component Inspection	647
Removal and Installation	
IGNITION SIGNAL	
Component Description	
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	659
Removal and Installation	
INJECTOR CIRCUIT	
Component DescriptionCONSULT-II Reference Value in Data Monitor N	
CONSULT-II Reference value in Data Worldon	. 661
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	
Removal and Installation	
START SIGNAL	670
CONSULT-II Reference Value in Data Monitor N	lode
	. 670
Wiring Diagram	671
Diagnostic Procedure	672
FUEL PUMP CIRCUIT	674
Description	674
CONSULT-IIReference Value in Data Monitor N	1ode
	. 674
Wiring Diagram	675
Diagnostic Procedure	
Component Inspection	
Removal and Installation	
REFRIGERANT PRESSURE SENSOR	
Component Description	
Wiring Diagram	681
Diagnostic Procedure	
Removal and Installation	
ELECTRICAL LOAD SIGNAL	
Description	
CONTROL INCOME VALUE III DALA WOUND IN	. 685

Diagnostic Procedure	595
Component Inspection	598
DTC P1706 PNP SWITCH	600
Component Description	600
CONSULT-II Reference Value in Data Monitor Mode	
	600
On Board Diagnosis Logic	600
DTC Confirmation Procedure	600
Overall Function Check	601
Wiring Diagram	602
Diagnostic Procedure	603
DTC P1720 VEHICLE SPEED SENSOR (A/T OUT-	•
PUT)	606
Description	606
CONSULT-II Reference Value in Data Monitor Mode	
	606
On Board Diagnosis Logic	606
DTC Confirmation Procedure	606
Diagnostic Procedure	607
DTC P1780 SHIFT CHANGE SIGNAL	608
Description	608
On Board Diagnosis Logic	608
DTC Confirmation Procedure	
Diagnostic Procedure	608
DTC P1805 BRAKE SWITCH	610
Description	610
CONSULT-II Reference Value in Data Monitor Mode	
	610
On Board Diagnosis Logic	610
DTC Confirmation Procedure	610
Wiring Diagram	
Diagnostic Procedure	
Component Inspection	614
DTC P2122, P2123 APP SENSOR	615
Component Description	615
CONSULT-II Reference Value in Data Monitor Mode	
	615
On Board Diagnosis Logic	615
DTC Confirmation Procedure	616
Wiring Diagram	617
Diagnostic Procedure	618
Component Inspection	620
Removal and Installation	
DTC P2127, P2128 APP SENSOR	621
Component Description	621
CONSULT-II Reference Value in Data Monitor Mode	
	621
On Board Diagnosis Logic	621
DTC Confirmation Procedure	622
Wiring Diagram	623
Diagnostic Procedure	624
Component Inspection	626
Removal and Installation	626
DTC P2135 TP SENSOR	627
Component Description	627
CONSULT-II Reference Value in Data Monitor Mode	
	627
On Board Diagnosis Logic	627
DTC Confirmation Procedure	

Wiring Diagram	686	SERVICE DATA AND SPECIFICATIONS ((SDS)706
Diagnostic Procedure	688	Fuel Pressure Regulator	706
DATA LINK CONNECTOR	691	Idle Speed and Ignition Timing	706
Wiring Diagram	691	Calculated Load Value	706
EVAPORATIVE EMISSION SYSTEM	692	Mass Air Flow Sensor	706
Description	692	Intake Air Temperature Sensor	706
Component Inspection	695	Engine Coolant Temperature Sensor	706
How to Detect Fuel Vapor Leakage	696	Heated Oxygen Sensor 1	706
ON BOARD REFUELING VAPOR RECO	VERY	Heated Oxygen sensor 2	706
(ORVR)	698	Fuel Temperature Sensor	706
System Description	698	Crankshaft Position Sensor (POS)	706
Diagnostic Procedure	699	Camshaft Position Sensor (PHASE)	707
Component Inspection	701	Radiator Coolant Temperature Sensor	707
POSITIVE CRANKCASE VENTILATION	704	Throttle Control Motor	707
Description	704	Injector	707
Component Inspection	704	Fuel Pump	707

INDEX FOR DTC PFP:00024

Alphabetical Index

ABS002CT

Α

EC

С

D

Е

F

G

Н

M

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-143, "DTC U1000, U1001 CAN COMMUNICATION LINE".

×: Applicable —: Not applicable

Items	DTO	C* ¹		MIL lighting	
(CONSULT-II screen terms)	CONSULT-II GST* ²	ECM*3	Trip	up	Reference page
A/T INTERLOCK	P1730	1730	1	×	<u>AT-167</u>
A/T TCC S/V FNCTN	P0744	0744	2	×	<u>AT-128</u>
APP SEN 1/CIRC	P2122	2122	1	×	EC-615
APP SEN 1/CIRC	P2123	2123	1	×	EC-615
APP SEN 2/CIRC	P2127	2127	1	×	EC-621
APP SEN 2/CIRC	P2128	2128	1	×	EC-621
APP SENSOR	P2138	2138	1	×	EC-634
ATF TEMP SEN/CIRC	P0710	0710	2	×	<u>AT-154</u>
BRAKE SW/CIRCUIT	P1805	1805	2	-	EC-610
CAN COMM CIRCUIT	U1000	1000*4	1	×	EC-143
CAN COMM CIRCUIT	U1001	1001*4	2	_	EC-143
CKP SEN/CIRCUIT	P0335	0335	2	×	EC-309
CLOSED LOOP-B1	P1148	1148	1	×	EC-505
CLOSED LOOP-B2	P1168	1168	1	×	EC-505
CMP SEN/CIRC-B1	P0340	0340	2	×	EC-317
CTP LEARNING	P1225	1225	2	_	EC-527
CTP LEARNING	P1226	1226	2	_	EC-529
CYL 1 MISFIRE	P0301	0301	2	×	EC-298
CYL 2 MISFIRE	P0302	0302	2	×	EC-298
CYL 3 MISFIRE	P0303	0303	2	×	EC-298
CYL 4 MISFIRE	P0304	0304	2	×	EC-298
CYL 5 MISFIRE	P0305	0305	2	×	EC-298
CYL 6 MISFIRE	P0306	0306	2	×	EC-298
CYL 7 MISFIRE	P0307	0307	2	×	EC-298
CYL 8 MISFIRE	P0308	0308	2	×	EC-298
D/C SOLENOID/CIRC	P1762	1762	1	×	<u>AT-199</u>
D/C SOLENOID FNCTN	P1764	1764	1	×	<u>AT-205</u>
ECM	P0605	0605	1 or 2	× or —	EC-410
ECM BACK UP/CIRCUIT	P1065	1065	2	×	EC-418
ECT SEN/CIRC	P0117	0117	1	×	EC-193
ECT SEN/CIRC	P0118	0118	1	×	EC-193
ECT SENSOR	P0125	0125	1	×	EC-205
ENG OVER TEMP	P1217	1217	1	×	EC-509
ETC ACTR	P1121	1121	1	×	EC-440
ETC FUNCTION/CIRC	P1122	1122	1	×	EC-442
ETC MOT	P1128	1128	1	×	EC-455
ETC MOT PWR	P1124	1124	1	×	EC-449

	DTC	_* *1		NAIL POLICE	
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Trip	MIL lighting up	Reference page
ETC MOT PWR	P1126	1126	1	×	EC-449
EVAP GROSS LEAK	P0455	0455	2	×	EC-370
EVAP PURG FLOW/MON	P0441	0441	2	×	EC-327
EVAP SMALL LEAK	P0442	0442	2	×	EC-333
EVAP SMALL LEAK	P1442	1442	2	×	EC-535
EVAP SYS PRES SEN	P0452	0452	2	×	EC-355
EVAP SYS PRES SEN	P0453	0453	2	×	EC-362
EVAP VERY SML LEAK	P0456	0456	2	×	EC-378
EVAP VERY SML LEAK	P1456	1456	2	×	EC-565
FAN CONT S/V CIRC	P1480	1480	1	_	EC-578
FPCM/CIRCUIT	P1220	1220	2	×	EC-519
FR/B SOLENOID/CIRC	P1757	1757	1	×	<u>AT-189</u>
FR/B SOLENOID FNCT	P1759	1759	1	×	<u>AT-194</u>
FTT SEN/CIRCUIT	P0182	0182	2	×	EC-288
FTT SEN/CIRCUIT	P0183	0183	2	×	EC-288
FTT SENSOR	P0181	0181	2	×	EC-283
FUEL LEV SEN SLOSH	P0460	0460	2	×	EC-387
FUEL LEVEL SENSOR	P0461	0461	2	×	EC-392
FUEL LEVL SEN/CIRC	P0462	0462	2	×	EC-394
FUEL LEVL SEN/CIRC	P0463	0463	2	×	EC-394
FUEL LEVL SEN/CIRC	P1464	1464	2	×	EC-574
FUEL SYS-LEAN-B1	P0171	0171	2	×	EC-266
FUEL SYS-LEAN-B2	P0174	0174	2	×	EC-266
FUEL SYS-RICH-B1	P0172	0172	2	×	EC-275
FUEL SYS-RICH-B2	P0175	0175	2	×	EC-275
HLR/C SOL FNCTN	P1769	1769	1	×	<u>AT-215</u>
HLR/C SOL/CIRC	P1767	1767	1	×	AT-209
HO2S1 (B1)	P0132	0132	2	×	EC-214
HO2S1 (B1)	P0133	0133	2	×	EC-224
HO2S1 (B1)	P0134	0134	2	×	EC-236
HO2S1 (B1)	P1143	1143	2	×	EC-468
HO2S1 (B1)	P1144	1144	2	×	EC-474
HO2S1 (B2)	P0152	0152	2	×	EC-214
HO2S1 (B2)	P0153	0153	2	×	EC-224
HO2S1 (B2)	P0154	0154	2	×	EC-236
HO2S1 (B2)	P1163	1163	2	×	EC-468
HO2S1 (B2)	P1164	1164	2	×	EC-474
HO2S1 HTR (B1)	P0031	0031	2	×	EC-157
HO2S1 HTR (B1)	P0032	0032	2	×	EC-157
HO2S1 HTR (B2)	P0051	0051	2	×	EC-157
HO2S1 HTR (B2)	P0052	0052	2	×	EC-157
HO2S2 (B1)	P0138	0138	2	×	EC-245

Items	DT	C* ¹		MIL lighting		А
(CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Trip	MIL lighting up	Reference page	A
HO2S2 (B1)	P0139	0139	2	×	EC-254	EC
HO2S2 (B1)	P1146	1146	2	×	EC-481	_0
HO2S2 (B1)	P1147	1147	2	×	EC-493	:
HO2S2 (B2)	P0158	0158	2	×	EC-245	С
HO2S2 (B2)	P0159	0159	2	×	EC-254	:
HO2S2 (B2)	P1166	1166	2	×	EC-481	D
HO2S2 (B2)	P1167	1167	2	×	EC-493	
HO2S2 HTR (B1)	P0037	0037	2	×	EC-165	
HO2S2 HTR (B1)	P0038	0038	2	×	EC-165	Е
HO2S2 HTR (B2)	P0057	0057	2	×	EC-165	:
HO2S2 HTR (B2)	P0058	0058	2	×	EC-165	_
I/C SOLENOID/CIRC	P1752	1752	1	×	<u>AT-179</u>	F
I/C SOLENOID FNCTN	P1754	1754	1	×	<u>AT-185</u>	
IAT SEN/CIRCUIT	P0112	0112	2	×	EC-189	G
IAT SEN/CIRCUIT	P0113	0113	2	×	EC-189	
IAT SENSOR	P0127	0127	2	×	EC-208	
INT/V TIM CONT-B1	P0011	0011	2	×	EC-146	Н
INT/V TIM CONT-B2	P0021	0021	2	×	EC-146	•
INT/V TIM V/CIR-B1	P1111	1111	2	×	EC-428	
INT/V TIM V/CIR-B2	P1136	1136	2	×	EC-428	•
INTK TIM S/CIR-B1	P1140	1140	2	×	EC-460	•
INTK TIM S/CIR-B2	P1145	1145	2	×	EC-460	J
ISC SYSTEM	P0506	0506	2	×	EC-401	•
ISC SYSTEM	P0507	0507	2	×	EC-403	K
KNOCK SEN/CIRC-B1	P0327	0327	2	_	EC-304	
KNOCK SEN/CIRC-B1	P0328	0328	2	_	EC-304	
KNOCK SEN/CIRC-B2	P0332	0332	2	_	EC-304	L
KNOCK SEN/CIRC-B2	P0333	0333	2	_	EC-304	
L/PRESS SOL/CIRC	P0745	0745	2	×	<u>AT-134</u>	N
LC/B SOLENOID FNCT	P1774	1774	1	×	<u>AT-226</u>	IV
LC/B SOLENOID/CIRC	P1772	1772	1	×	<u>AT-220</u>	
MAF SEN/CIRCUIT	P0101	0101	1	×	EC-174	•
MAF SEN/CIRCUIT	P0102	0102	1	×	EC-182	•
MAF SEN/CIRCUIT	P0103	0103	1	×	EC-182	•
MAF SENSOR	P1102	1102	1	×	EC-422	
MIL/CIRC	P0650	0650	2	_	EC-413	
MULTI CYL MISFIRE	P0300	0300	2	×	EC-298	
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	2	_	<u>BL-172</u>	•
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	No DTC	Flashing	_	Flashing	EC-65	
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_	

EC-11 Revision: 2004 October 2004 M45 G

Items	DT	C* ¹		MIL lighting	
(CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Trip	up	Reference page
P-N POS SW/CIRCUIT	P1706	1706	2	×	EC-600
PNP SW/CIRC	P0705	0705	2	×	<u>AT-110</u>
PURG VOLUME CONT/V	P0444	0444	2	×	EC-342
PURG VOLUME CONT/V	P0445	0445	2	×	EC-342
PURG VOLUME CONT/V	P1444	1444	2	×	EC-544
PW ST P SEN/CIRC	P0550	0550	2	_	EC-405
RADI TEMP SEN/CIRC	P1119	1119	1	_	EC-434
SENSOR POWER/CIRC	P1229	1229	1	×	EC-531
SHIFT SIG FNCTN	P1780	1780	2	_	EC-608
TCC SOLENOID/CIRC	P0740	0740	2	×	<u>AT-123</u>
TCS C/U FUNCTN	P1211	1211	2	_	EC-507
TCS/CIRC	P1212	1212	2	_	EC-508
THERMSTAT FNCTN	P0128	0128	2	×	EC-212
TP SEN 1/CIRC	P0222	0222	1	×	EC-292
TP SEN 1/CIRC	P0223	0223	1	×	EC-292
TP SEN 2/CIRC	P0122	0122	1	×	EC-199
TP SEN 2/CIRC	P0123	0123	1	×	EC-199
TP SENSOR	P2135	2135	1	×	EC-627
TURBINE REV S/CIRC	P1716	1716	2	×	<u>AT-160</u>
TW CATALYST SYS-B1	P0420	0420	2	×	EC-322
TW CATALYST SYS-B2	P0430	0430	2	×	EC-322
V/SP SEN(A/T OUT)	P1720	1720	2	_	EC-606
VC/V BYPASS/V	P1490	1490	2	×	EC-584
VC CUT/V BYPASS/V	P1491	1491	2	×	EC-590
VEH SPD SEN/CIR AT	P0720	0720	2	×	<u>AT-116</u>
VEH SPEED SEN/CIRC	P0500	0500	2	×	EC-399
VENT CONTROL VALVE	P0447	0447	2	×	EC-348
VENT CONTROL VALVE	P1446	1446	2	×	EC-552
VENT CONTROL VALVE	P1448	1448	2	×	EC-558

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} The troubleshooting for this DTC needs CONSULT-II.

DTC No. Index

NOTE:

If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-143, "DTC U1000, U1001 CAN COMMUNICATION LINE".

×: Applicable —: Not applicable

Α

EC

DTC	DTC*1			MIL lighting	
CONSULT-II GST* ²	ECM* ³	(CONSULT-II screen terms)	Trip	up	Reference page
No DTC	Flashing	NO DTC IS DETECTED. FURTHER TESTING — MAY BE REQUIRED.		Flashing	EC-65
U1000	1000*4	CAN COMM CIRCUIT	1	×	EC-143
U1001	1001*4	CAN COMM CIRCUIT	2	_	EC-143
P0000	0000	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_	_	_
P0011	0011	INT/V TIM CONT-B1	2	×	EC-146
P0021	0021	INT/V TIM CONT-B2	2	×	EC-146
P0031	0031	HO2S1 HTR (B1)	2	×	EC-157
P0032	0032	HO2S1 HTR (B1)	2	×	EC-157
P0037	0037	HO2S2 HTR (B1)	2	×	<u>EC-165</u>
P0038	0038	HO2S2 HTR (B1)	2	×	EC-165
P0051	0051	HO2S1 HTR (B2)	2	×	EC-157
P0052	0052	HO2S1 HTR (B2)	2	×	EC-157
P0057	0057	HO2S2 HTR (B2)	2	×	EC-165
P0058	0058	HO2S2 HTR (B2)	2	×	EC-165
P0101	0101	MAF SEN/CIRCUIT	1	×	EC-174
P0102	0102	MAF SEN/CIRCUIT	1	×	EC-182
P0103	0103	MAF SEN/CIRCUIT	1	×	EC-182
P0112	0112	IAT SEN/CIRCUIT	2	×	EC-189
P0113	0113	IAT SEN/CIRCUIT	2	×	EC-189
P0117	0117	ECT SEN/CIRC	1	×	EC-193
P0118	0118	ECT SEN/CIRC	1	×	EC-193
P0122	0122	TP SEN2/CIRC	1	×	EC-199
P0123	0123	TP SEN2/CIRC	1	×	EC-199
P0125	0125	ECT SENSOR	1	×	EC-205
P0127	0127	IAT SENSOR	2	×	EC-208
P0128	0128	THERMSTAT FNCTN	2	×	EC-212
P0132	0132	HO2S1 (B1)	2	×	EC-214
P0133	0133	HO2S1 (B1)	2	×	EC-224
P0134	0134	HO2S1 (B1)	2	×	EC-236
P0138	0138	HO2S2 (B1)	2	×	EC-245
P0139	0139	HO2S2 (B1)	2	×	EC-254
P0152	0152	HO2S1 (B2)	2	×	EC-214
P0153	0153	HO2S1 (B2)	2	×	EC-224
P0154	0154	HO2S1 (B2)	2	×	EC-236
P0158	0158	HO2S2 (B2)	2	×	EC-245

DTC*1				MH P.LC.	
CONSULT-II GST* ²	ECM*3	Items (CONSULT-II screen terms)	Trip	MIL lighting up	Reference page
P0159	0159	HO2S2 (B2)	2	×	EC-254
P0171	0171	FUEL SYS-LEAN-B1	2	×	EC-266
P0172	0172	FUEL SYS-RICH-B1	2	×	EC-275
P0174	0174	FUEL SYS-LEAN-B2	2	×	EC-266
P0175	0175	FUEL SYS-RICH-B2	2	×	EC-275
P0181	0181	FTT SENSOR	2	×	EC-283
P0182	0182	FTT SEN/CIRCUIT	2	×	EC-288
P0183	0183	FTT SEN/CIRCUIT	2	×	EC-288
P0222	0222	TP SEN 1/CIRC	1	×	EC-292
P0223	0223	TP SEN 1/CIRC	1	×	EC-292
P0300	0300	MULTI CYL MISFIRE	2	×	EC-298
P0301	0301	CYL 1 MISFIRE	2	×	EC-298
P0302	0302	CYL 2 MISFIRE	2	×	EC-298
P0303	0303	CYL 3 MISFIRE	2	×	EC-298
P0304	0304	CYL 4 MISFIRE	2	×	EC-298
P0305	0305	CYL 5 MISFIRE	2	×	EC-298
P0306	0306	CYL 6 MISFIRE	2	×	EC-298
P0307	0307	CYL 7 MISFIRE	2	×	EC-298
P0308	0308	CYL 8 MISFIRE	2	×	EC-298
P0327	0327	KNOCK SEN/CIRC-B1	2	_	EC-304
P0328	0328	KNOCK SEN/CIRC-B1	2	_	EC-304
P0332	0332	KNOCK SEN/CIRC-B2	2	_	EC-304
P0333	0333	KNOCK SEN/CIRC-B2	2	_	EC-304
P0335	0335	CKP SEN/CIRCUIT	2	×	EC-309
P0340	0340	CMP SEN/CIRC-B1	2	×	EC-317
P0420	0420	TW CATALYST SYS-B1	2	×	EC-322
P0430	0430	TW CATALYST SYS-B2	2	×	EC-322
P0441	0441	EVAP PURG FLOW/MON	2	×	EC-327
P0442	0442	EVAP SMALL LEAK	2	×	EC-333
P0444	0444	PURG VOLUME CONT/V	2	×	EC-342
P0445	0445	PURG VOLUME CONT/V	2	×	EC-342
P0447	0447	VENT CONTROL VALVE	2	×	EC-348
P0452	0452	EVAP SYS PRES SEN	2	×	EC-355
P0453	0453	EVAP SYS PRES SEN	2	×	EC-362
P0455	0455	EVAP GROSS LEAK	2	×	EC-370
P0456	0456	EVAP VERY SML LEAK	2	×	EC-378
P0460	0460	FUEL LEV SEN SLOSH	2	×	EC-387
P0461	0461	FUEL LEVEL SENSOR	2	×	EC-392
P0462	0462	FUEL LEVL SEN/CIRC	2	×	EC-394
P0463	0463	FUEL LEVL SEN/CIRC	2	×	EC-394
P0500	0500	VEH SPEED SEN/CIRC	2	×	EC-399
P0506	0506	ISC SYSTEM	2	×	EC-401

Α		MIL lighting		Items	C* ¹	DTO
	Reference page	up	Trip	(CONSULT-II screen terms)	ECM* ³	CONSULT-II GST* ²
EC	EC-403	×	2	ISC SYSTEM	0507	P0507
	EC-405	_	2	PW ST P SEN/CIRC	0550	P0550
	EC-410	× or —	1 or 2	ECM	0605	P0605
С	EC-413	_	2	MIL/CIRC	0650	P0650
•	<u>AT-110</u>	×	2	PNP SW/CIRC	0705	P0705
D	<u>AT-154</u>	×	2	ATF TEMP SEN/CIRC	0710	P0710
	<u>AT-116</u>	×	2	VEH SPD SEN/CIR AT	0720	P0720
	<u>AT-123</u>	×	2	TCC SOLENOID/CIRC	0740	P0740
Е	<u>AT-128</u>	×	2	A/T TCC S/V FNCTN	0744	P0744
	<u>AT-134</u>	×	2	L/PRESS SOL/CIRC	0745	P0745
F	EC-418	×	2	ECM BACK UP/CIRCUIT	1065	P1065
. г	EC-422	×	1	MAF SENSOR	1102	P1102
•	EC-428	×	2	INT/V TIM V/CIR-B1	1111	P1111
G	EC-434	_	1	RADI TEMP SEN/CIRC	1119	P1119
•	EC-440	×	1	ETC ACTR	1121	P1121
	EC-442	×	1	ETC FUNCTION/CIRC	1122	P1122
- H	EC-449	×	1	ETC MOT PWR	1124	P1124
•	EC-449	×	1	ETC MOT PWR	1126	P1126
	EC-455	×	1	ETC MOT	1128	P1128
•	EC-428	×	2	INT/V TIM V/CIR-B2	1136	P1136
•	EC-460	×	2	INTK TIM S/CIRC-B1	1140	P1140
J	EC-468	×	2	HO2S1 (B1)	1143	P1143
•	EC-474	×	2	HO2S1 (B1)	1144	P1144
K	EC-460	×	2	INTK TIM S/CIRC-B2	1145	P1145
	EC-481	×	2	HO2S2 (B1)	1146	P1146
-	EC-493	×	2	HO2S2 (B1)	1147	P1147
L	EC-505	×	1	CLOSED LOOP-B1	1148	P1148
•	EC-468	×	2	HO2S1 (B2)	1163	P1163
D. //	EC-474	×	2	HO2S1 (B2)	1164	P1164
M	EC-481	×	2	HO2S2 (B2)	1166	P1166
•	EC-493	×	2	HO2S2 (B2)	1167	P1167
•	EC-505	×	1	CLOSED LOOP-B2	1168	P1168
•	EC-507	_	2	TCS C/U FUNCTN	1211	P1211
•	EC-508	_	2	TCS/CIRC	1212	P1212
-	EC-509	×	1	ENG OVER TEMP	1217	P1217
•	EC-519	×	2	FPCM/CIRCUIT	1220	P1220
•	EC-527	_	2	CTP LEARNING	1225	P1225
•	EC-529	_	2	CTP LEARNING	1226	P1226
•	EC-531	×	1	SENSOR POWER/CIRC	1229	P1229
	EC-535	×	2	EVAP SMALL LEAK	1442	P1442
-	EC-544	×	2	PURG VOLUME CONT/V	1444	P1444
	EC-552	×	2	VENT CONTROL VALVE	1446	P1446

EC-15 Revision: 2004 October 2004 M45

DT	C* ¹	Items		MII lighting	
CONSULT-II GST* ²	ECM* ³	(CONSULT-II screen terms)	Trip	MIL lighting up	Reference page
P1448	1448	VENT CONTROL VALVE	2	×	EC-558
P1456	1456	EVAP VERY SML LEAK	2	×	EC-565
P1464	1464	FUEL LEVL SEN/CIRC	2	×	EC-574
P1480	1480	FAN CONT S/V CIRC	1	_	EC-578
P1490	1490	VC/V BYPASS/V	2	×	EC-584
P1491	1491	VC CUT/V BYPASS/V	2	×	EC-590
P1610 - P1615	1610 - 1615	NATS MALFUNCTION	2	_	<u>BL-172</u>
P1706	1706	P-N POS SW/CIRCUIT	2	×	EC-600
P1716	1716	TURBINE REV S/CIRC	2	×	<u>AT-160</u>
P1720	1720	V/SP SEN(A/T OUT)	2	_	EC-606
P1730	1730	A/T INTERLOCK	1	×	<u>AT-167</u>
P1752	1752	I/C SOLENOID/CIRC	1	×	<u>AT-179</u>
P1754	1754	I/C SOLENOID FNCTN	1	×	<u>AT-185</u>
P1757	1757	FR/B SOLENOID/CIRC	1	×	<u>AT-189</u>
P1759	1759	FR/B SOLENOID FNCT	1	×	<u>AT-194</u>
P1762	1762	D/C SOLENOID/CIRC	1	×	<u>AT-199</u>
P1764	1764	D/C SOLENOID FNCTN	1	×	<u>AT-205</u>
P1767	1767	HLR/C SOL/CIRC	1	×	<u>AT-209</u>
P1769	1769	HLR/C SOL FNCTN	1	×	<u>AT-215</u>
P1772	1772	LC/B SOLENOID/CIRC	1	×	<u>AT-220</u>
P1774	1774	LC/B SOLENOID FNCT	1	×	<u>AT-226</u>
P1780	1780	SHIFT SIG FNCTN	2	_	EC-608
P1805	1805	BRAKE SW/CIRCUIT	2	_	EC-610
P2122	2122	APP SEN 1/CIRC	1	×	EC-615
P2123	2123	APP SEN 1/CIRC	1	×	EC-615
P2127	2127	APP SEN 2/CIRC	1	×	EC-621
P2128	2128	APP SEN 2/CIRC	1	×	EC-621
P2135	2135	TP SENSOR	1	×	EC-627
P2138	2138	APP SENSOR	1	×	EC-634

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} The troubleshooting for this DTC needs CONSULT-II.

PRECAUTIONS PFP:00001

Precautions for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

DC004C0

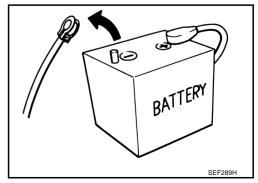
The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the SRS and SB section of this Service Man-

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SRS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

On Board Diagnostic (OBD) System of Engine and A/T

ABS002CW


The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

- Be sure to turn the ignition switch OFF and disconnect the negative battery terminal before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease, dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to <u>PG-53</u>, "<u>HAR-NESS CONNECTOR</u>".
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system,
 etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

Precaution

- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.
- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect battery ground cable. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned OFF.
- Before removing parts, turn ignition switch OFF and then disconnect battery ground cable.

EC

Α

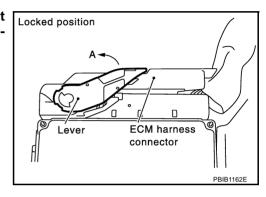
Е

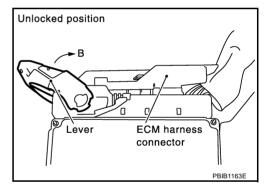
Н

J

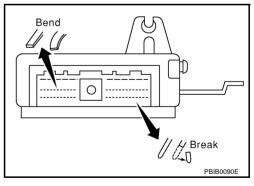

K

L

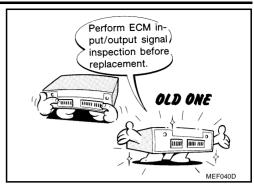

PRECAUTIONS


- Do not disassemble ECM.
- If a battery terminal is disconnected, the memory will return to the ECM value.

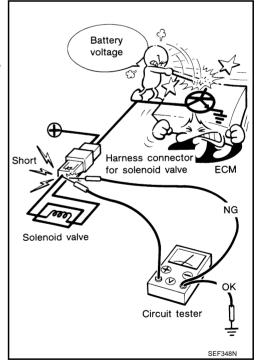
The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a malfunction. Do not replace parts because of a slight variation.



 When connecting ECM harness connector, fasten it securely with a lever as far as it will go as shown in the figure.




- When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).
 - Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.
- Securely connect ECM harness connectors.
 - A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep engine control system harness at least 10 cm (4 in) away from adjacent harness, to prevent engine control system malfunctions due to receiving external noise, degraded operation of ICs, etc.
- Keep engine control system parts and harness dry.


PRECAUTIONS

- Before replacing ECM, perform ECM Terminals and Reference Value inspection and make sure ECM functions properly. Refer to <u>EC-98</u>, <u>"ECM Terminals and Reference Value"</u>.
- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble electric throttle control actuator.
- Even a slight leak in the air intake system can cause serious incidents.
- Do not shock or jar the camshaft position sensor (PHASE), crankshaft position sensor (POS).
- After performing each TROUBLE DIAGNOSIS, perform DTC Confirmation Procedure or Overall Function Check.
 The DTC should not be displayed in the DTC Confirmation Procedure if the repair is completed. The Overall Function Check should be a good result if the repair is completed.

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

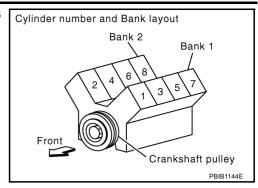
Revision: 2004 October EC-19 2004 M45

EC

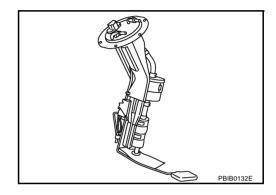
Α

Е

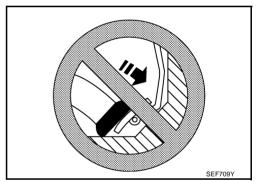
F


G

Н


Κ

L


B1 indicates the bank 1 and B2 indicates the bank 2 as shown in the figure.

- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque.

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- Keep the antenna as far as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (8 in) away from the harness of electronic controls.
 Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standingwave radio can be kept smaller.
- Be sure to ground the radio to vehicle body.

ABS002CY

Wiring Diagrams and Trouble Diagnosis

When you read Wiring diagrams, refer to the following:

- GI-14, "How to Read Wiring Diagrams"
- <u>PG-2, "POWER SUPPLY ROUTING"</u> for power distribution circuit

When you perform trouble diagnosis, refer to the following:

- GI-10, "HOW TO FOLLOW TEST GROUPS IN TROUBLE DIAGNOSES"
- GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident"

Revision: 2004 October EC-20 2004 M45

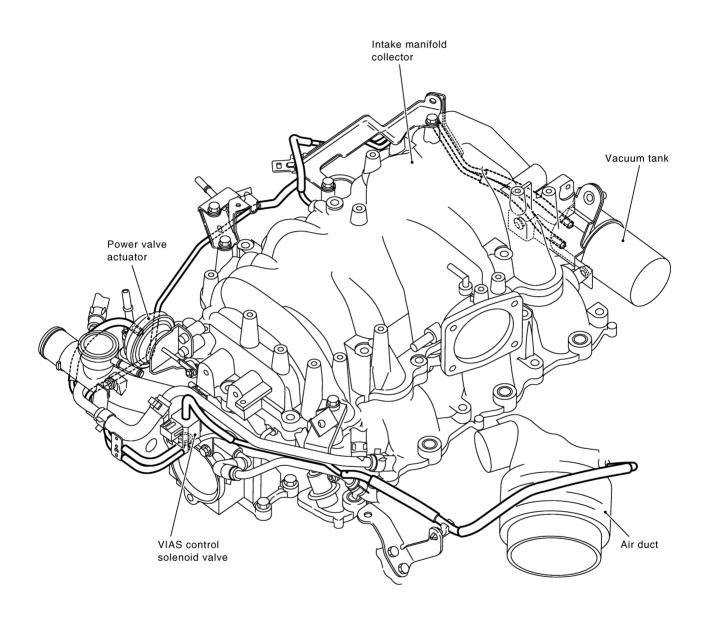
PREPARATION

PREPARATION PFP:00002

Special Service Tools

ABS002CZ

Tool number (Kent-Moore No.) Tool name		Description
KV10117100 (J-36471-A) Heated oxygen sensor wrench	S-NT379	Loosening or tightening heated oxygen sensors with 22 mm (0.87 in) hexagon nut
KV10114400 (J-38365) Heated oxygen sensor wrench	S-NT636	Loosening or tightening heated oxygen sensors a: 22 mm (0.87 in)
(J-44321) Fuel pressure gauge kit	LEC642	Checking fuel pressure
EG17650301 (J-33984-A) Radiator cap tester adapter		Adapting radiator cap tester to radiator cap and radiator filler neck a: 28 (1.10) dia. b: 31.4 (1.236) dia. c: 41.3 (1.626) dia. Unit: mm (in)
ommercial Servi	ce Tools	ABS002D0
Tool name (Kent-Moore No.)		Description
Leak detector i.e.: (J-41416)		Locating the EVAP leak


	S-NT703	
EVAP service port adapter i.e.: (J-41413-OBD)		Applying positive pressure through EVAP service port
	S-NT704	

PREPARATION

Tool name (Kent-Moore No.)		Description
Fuel filler cap adapter i.e.: (MLR-8382)		Checking fuel tank vacuum relief valve opening pressure
	S-NT815	
Socket wrench	19 mm (0.75 in) More than More than 32 mm 32 mm	Removing and installing engine coolant temperature sensor
	32 mn (1.26 in) S-NT705	
Oxygen sensor thread cleaner i.e.: (J-43897-18) (J-43897-12)	Mating surface shave cylinder	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with anti-seize lubricant shown below. a: J-43897-18 18 mm diameter with pitch 1.5 mm for Zirconia Oxygen Sensor b: J-43897-12 12 mm diameter with pitch 1.25 mm for Titania Oxygen Sensor
Anti-seize lubricant i.e.: (Permatex TM 133AR or equivalent meeting MIL specification MIL-A- 907)	S-NT779	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.

ENGINE CONTROL SYSTEM ENGINE CONTROL SYSTEM PFP:23710 Α **System Diagram** ABS002D1 Throttle control motor are built into) Mass air flow sensor and Ignition switch Throttle position sensor, Park/Neutral position MIL TO TELL CAN communication Electric throttle control intake air temperature EC pressure sensor pressure sensor Power steering (Accelerator pedal (PNP) switch position sensor, Refrigerant Air cleaner С actuator sensor Data link connector D Cooling fan Cooling fan pump Е Ignition coil (with power ECM Crankshaft position sensor (POS) transistor) Camshaft 00 (PHASE) position sensor solenoid Cooling speed control F valve fan HO2S2 (bank 1) Stop lamp switch (bank 1) H02S1 G *10 EVAP canister vent Fuel injector control valve Н solenoid valve VIAS control Power valve Vacuum tank actuator temperature sensor Power valve Knock senśor *9 Three way catalyst '8 Three way catalyst Engine coolant J -uel injector (Under floor) position sensor (Manifold) timing control Intake valve K EVAP service port L valve volume control solenoid PCVcontrol position sensor *7 EVAP canister purge *5 Intake valve timing M Fuel damper *6 PCV valve **EVAP** canister pressure valve system control Fuel pump sensor EVAP control module

Fuel tank temperature sensor Refueling vapor cut valve Fuel pressure regulator Refueling control valve Fuel level sensor Fuel pump *4 HO2S2 (bank 2) Fuel damper (bank 2) cut valve *3 HO2S1 Vacuum Muffler solenoid valve timing control '2 Intake valve *1 Ignition coil (with power valve bypass valve transistor) Fuel tank Vacuum cut PBIB1916E **EC-23** 2004 M45

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

PBIB1143E

System Chart ABS002D3 Input (Sensor) **ECM Function** Output (Actuator) • Camshaft position sensor (PHASE) Fuel injector Fuel injection & mixture ratio control Crankshaft position sensor (POS) EC Electronic ignition system Power transistor Mass air flow sensor Electric throttle control actuator Nissan torque demand control system Engine coolant temperature sensor Fuel injector Heated oxygen sensor 1 Fuel pump relay • Throttle position sensor Fuel pump control • Fuel pump control module Accelerator pedal position sensor (FPCM) Park/neutral position (PNP) switch MIL (On the instrument panel) On board diagnostic system Intake air temperature sensor Power valve control VIAS control solenoid valve · Power steering pressure sensor Heated oxygen sensor 1 heater control Heated oxygen sensor 1 heater Ignition switch Heated oxygen sensor 2 heater control Heated oxygen sensor 2 heater Battery voltage Intake valve timing control solenoid Knock sensor Intake valve timing control Refrigerant pressure sensor EVAP canister purge volume control EVAP canister purge flow control Stop lamp switch solenoid valve Fuel level sensor*1 Air conditioner relay Air conditioning cut control EVAP control system pressure sensor Cooling fan speed control solenoid Cooling fan speed control Fuel tank temperature sensor*1 Heated oxygen sensor 2*2 TCM (Transmission control module)*3 VDC/TCS/ABS control unit*3 EVAP canister vent control valve ON BOARD DIAGNOSIS for EVAP system Air conditioner switch*3

 Wheel sensor*3 Electrical load signal*3

Α

F

Н

Vacuum cut valve bypass valve

^{*1:} This sensor is not used to control the engine system. This is used only for the on board diagnosis.

^{*2:} This sensor is not used to control the engine system under normal conditions.

^{*3:} This signal is sent to the ECM through CAN communication line.

Multiport Fuel Injection (MFI) System INPUT/OUTPUT SIGNAL CHART

ABS002D4

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Heated oxygen sensor 1	Density of oxygen in exhaust gas		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position		
Park/neutral position (PNP) switch	Gear position	Fuel injection	
Ignition switch	Start signal	& mixture ratio	Fuel injector
Knock sensor	Engine knocking condition	Control	
Battery	Battery voltage		
Power steering pressure sensor	Power steering operation		
Heated oxygen sensor 2*1	Density of oxygen in exhaust gas		
VDC/TCS/ABS control unit*2	VDC/TCS operation command		
Air conditioner switch*2	Air conditioner operation		
Wheel sensor*2	Vehicle speed		

^{*1:} This sensor is not used to control the engine system. This is used only for the on board diagnosis.

SYSTEM DESCRIPTION

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from the crankshaft position sensor (POS), camshaft position sensor (PHASE) and the mass air flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- When selector lever is changed from N to D
- High-load, high-speed operation

<Fuel decrease>

- During deceleration
- During high engine speed operation

^{*2:} This signal is sent to the ECM through CAN communication line.

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst (manifold) can then better reduce CO, HC and NOx emissions. This system uses heated oxygen sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about heated oxygen sensor 1, refer to EC-214. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst (manifold). Even if the switching characteristics of heated oxygen sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensor 1 or its circuit
- Insufficient activation of heated oxygen sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from N to D
- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from heated oxygen sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot film) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

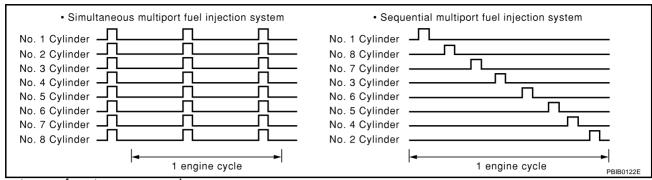
"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from heated oxygen sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

Revision: 2004 October EC-27 2004 M45

EC

Α


_

Н

J

K

FUEL INJECTION TIMING

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all eight cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The eight injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.

Electronic Ignition (EI) System INPUT/OUTPUT SIGNAL CHART

ABS002D5

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed		
Camshaft position sensor (PHASE)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position	Ignition timing control	Power transistor
Ignition switch	Start signal		
Knock sensor	Engine knocking		
Park/neutral position (PNP) switch	Gear position		
Battery	Battery voltage		
Wheel sensor*	Vehicle speed		

^{*:} This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

The ignition timing is controlled by the ECM to maintain the best airfuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM. This data forms the map shown.


The ECM receives information such as the injection pulse width crankshaft position sensor (POS) signal, and camshaft position sensor (PHASE) signal. Computing this information, ignition signals are transmitted to the power transistor.

e.g., N: 1,800 rpm, Tp: 1.50 msec

A °BTDC

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up

- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Nissan Torque Demand (NTD) Control System INPUT/OUTPUT SIGNAL CHART

ABS002VW

Sensor	Input signal to ECM	ECM function	Actuator	-
Camshaft position sensor (PHASE)	Engine aneed			-
Crankshaft position sensor (POS)	Engine speed			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Throttle position sensor	Throttle position			
Accelerator pedal position sensor	Accelerator pedal position			
Park/Neutral position (PNP) switch	Gear position	NTD acatral	Electric throttle con-	
Power steering pressure sensor	Power steering operation	NTD control	trol actuator and fuel injector	
Battery	Battery voltage			
TCM*	A/T control signal			
Air conditioner switch*	Air conditioner operation			
VDC/TCS/ABS control unit*	VDC/TCS/ABS operation			
Wheel sensor*	Vehicle speed			
Electrical load*	Electrical load signal			

^{*:}This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

NTD control system decides the target traction based on the accelerator operation status and the current driving condition. It then selects the engine torque target by correcting running resistance and atmospheric pressure, and controlling the power-train. Using electric throttle control actuator, it achieves the engine torque development target which corresponds linearly to the driver's accelerator operation.

Running resistance correction control compares the engine torque estimate value, measured vehicle acceleration, and running resistance on a flat road, and estimates vehicle weight gain and running resistance variation caused by slopes to correct the engine torque estimate value.

Atmospheric pressure correction control compares the engine torque estimate value from the airflow rate and the target engine torque for the target traction, and estimates variation of atmospheric pressure to correct the target engine torque. This system achieves powerful driving without reducing engine performance in the practical speed range in mountains and high-altitude areas.

EC

Α

Е

F

Н

Air Conditioning Cut Control INPUT/OUTPUT SIGNAL CHART

ABS002D6

Sensor	Input Signal to ECM	ECM function	Actuator
Air conditioner switch*	Air conditioner ON signal		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position		
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Air conditioner	A. 10.1
Engine coolant temperature sensor	Engine coolant temperature	cut control	Air conditioner relay
Ignition switch	Start signal		
Refrigerant pressure sensor	Refrigerant pressure		
Power steering pressure sensor	Power steering operation		
Wheel sensor*	Vehicle speed		

^{*:} This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned OFF.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.
- When refrigerant pressure is excessively low or high.

Fuel Cut Control (at No Load and High Engine Speed) INPUT/OUTPUT SIGNAL CHART

ABS002D7

Sensor	Input Signal to ECM	ECM function	Actuator
Park/neutral position (PNP) switch	Neutral position		
Accelerator pedal position sensor	Accelerator pedal position		
Engine coolant temperature sensor	Engine coolant temperature	Fuel cut con-	Fuel injector
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	trol	,
Wheel sensor*	Vehicle speed		

^{*:} This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

If the engine speed is above 1,400 rpm under no load (for example, the selector lever position is neutral and engine speed is over 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed.

Fuel cut will be operated until the engine speed reaches 1,000 rpm, then fuel cut will be cancelled.

NOTE:

This function is different from deceleration control listed under Multiport Fuel Injection (MFI) System, EC-26.

CAN Communication SYSTEM DESCRIPTION

ABS002D8

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring.

Each control unit transmits/receives data but selectively reads required data only. Refer to <u>LAN-21, "CAN Communication Unit"</u>, about CAN communication for detail.

EC

Α

С

D

Е

F

G

Н

1

J

Κ

BASIC SERVICE PROCEDURE

PFP:00018

ABS002D9

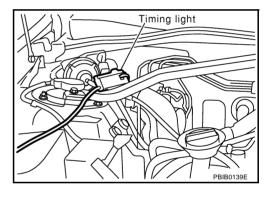
Idle Speed and Ignition Timing Check IDLE SPEED

(P) With CONSULT-II

Check idle speed in "DATA MONITOR" mode with CONSULT-II.

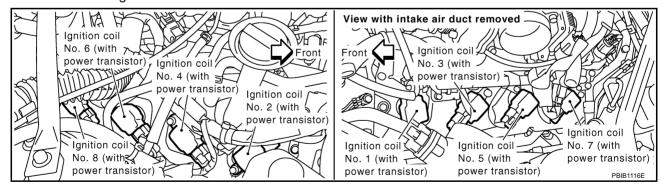
DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

With GST

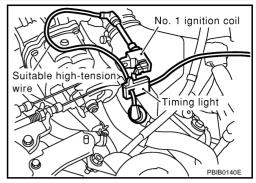

Check idle speed with GST.

IGNITION TIMING

Any of following two methods may be used.


Method A

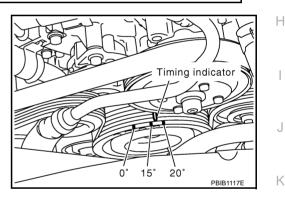
- 1. Attach timing light to loop wire as shown.
- 2. Check ignition timing.



Method B

1. Remove No. 1 ignition coil.

Connect No. 1 ignition coil and No. 1 spark plug with suitable high-tension wire as shown, and attach timing light clamp to this wire.



Insulating tape Cut Approx. 9.5 (0.374) Electrode Suitable 14 (0.55) Approx. 29.0 (1.142)

Approx.

Check ignition timing.

high-tension wire

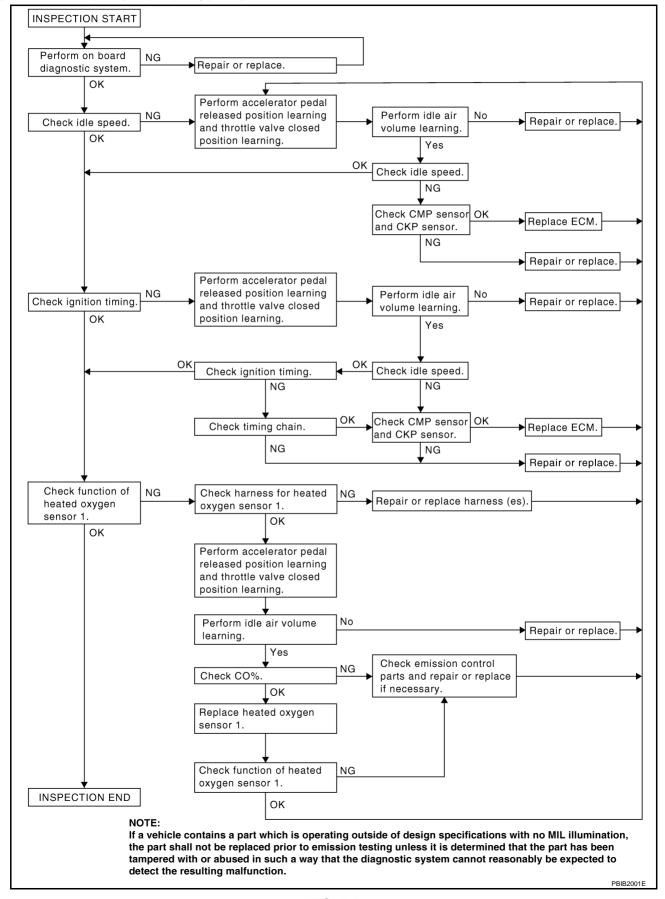
Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment **PREPARATION**

ABS002DA

M

Unit: mm (in)

SEF166Y

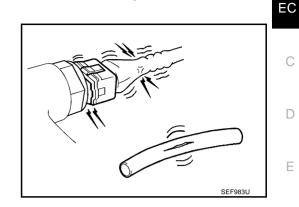

Α

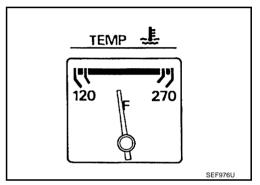
EC

- Make sure that the following parts are in good order.
- **Battery**
- Ignition system
- Engine oil and coolant levels
- Fuses
- ECM harness connector
- Vacuum hoses
- Air intake system (Oil filler cap, oil level gauge, etc.)
- Fuel pressure
- Engine compression
- Throttle valve
- Evaporative emission system
- 2. On air conditioner equipped models, checks should be carried out while the air conditioner is OFF.
- On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while selector lever is in P or N position.
- When measuring CO percentage, insert probe more than 40 cm (15.7 in) into tail pipe.

- Turn off headlamp, heater blower, rear window defogger.
- 6. Keep front wheels pointed straight ahead.

OVERALL INSPECTION SEQUENCE

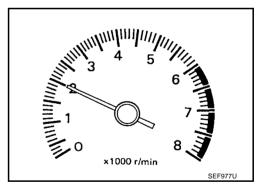



INSPECTION PROCEDURE

1. INSPECTION START

Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.

- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- Confirm that electrical or mechanical loads are not applied. 3.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.



- Run engine at about 2,000 rpm for about 2 minutes under no
- 6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NG

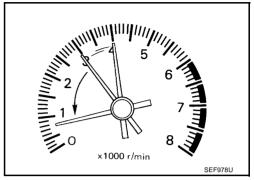
OK >> GO TO 3. NG >> GO TO 2.

2. REPAIR OR REPLACE

Repair or replace components as necessary according to corresponding Diagnostic Procedure.

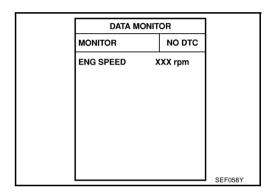
>> GO TO 3.

Н


Α

F

$\overline{3}$. Check target idle speed


(II) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

 650 ± 50 rpm (in P or N position)

Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

 650 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-44, "Throttle Valve Closed Position Learning".

>> GO TO 6.

6. PERFORM IDLE AIR VOLUME LEARNING

Perform EC-44, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 7.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

7. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

 650 ± 50 rpm (in P or N position)

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Check idle speed.

 650 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 8.

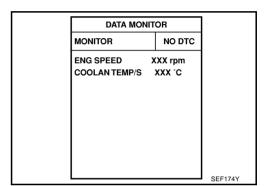
8. DETECT MALFUNCTIONING PART

Check the Following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-317.
- Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-309</u>.

OK or NG

OK >> GO TO 9.


NG >> 1. Repair or replace.

2. GO TO 4.

9. CHECK ECM FUNCTION

- Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-174, "ECM Re-Communicating Function".

>> GO TO 4.

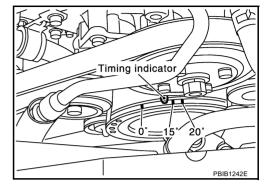
EC

D

G

Н

1 \


10. CHECK IGNITION TIMING

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

$12 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK (With CONSULT-II)>>GO TO 19. OK (Without CONSULT-II)>>GO TO 20. NG >> GO TO 11.

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-44, "Throttle Valve Closed Position Learning".

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Perform EC-44, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 14.

No >> 1. Follow the instruction of Idle Air Volume Learning.

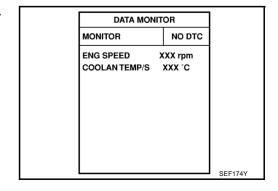
2. GO TO 4.

14. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

 650 ± 50 rpm (in P or N position)

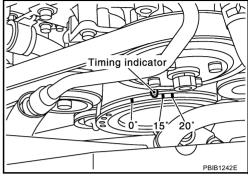

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Check idle speed.

 650 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 15. NG >> GO TO 17.


15. CHECK IGNITION TIMING AGAIN

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

$12 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK (With CONSULT-II)>>GO TO 19. OK (Without CONSULT-II)>>GO TO 20. NG >> GO TO 16.

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to EM-38, "TIMING CHAIN".

OK or NG

OK >> GO TO 17.

NG >> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-317.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-309.

OK or NG

OK >> GO TO 18.

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

- Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-174, "ECM Re-Communicating Function".

>> GO TO 4.

EC

D

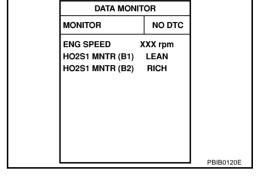
Κ

19. CHECK HEATED OXYGEN SENSOR 1 (BANK 1) SIGNAL

(P) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no load.
- See "HO2S1 MNTR (B1)" in "DATA MONITOR" mode.
- Running engine at 2,000 rpm under no load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: $RICH \rightarrow LEAN \rightarrow RICH$


2 times: $RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH$

OK or NG

OK >> GO TO 21.

NG (Monitor does not fluctuate.)>>GO TO 23.

NG (Monitor fluctuates less than 5 times.)>>GO TO 31.

20. CHECK HEATED OXYGEN SENSOR 1 (BANK 1) SIGNAL

Without CONSULT-II

- 1. Stop engine and set ECM to Self Diagnostic Test Mode II (Heated oxygen sensor 1 monitor). Refer to EC-65, "HOW TO SWITCH DIAGNOSTIC TEST MODE".
- 2. Start engine and run it at about 2,000 rpm for about 2 minutes under no load.
- 3. Running engine at 2,000 rpm under no load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK >> GO TO 22.

NG (MIL does not come on)>>GO TO 23.

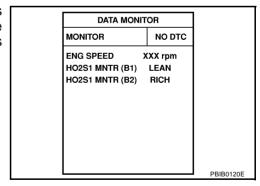
NG (MIL comes on less than 5 times)>>GO TO 31.

21. CHECK HEATED OXYGEN SENSOR 1 (BANK 2) SIGNAL

(II) With CONSULT-II

- 1. See "HO2S1 MNTR (B2)" in "DATA MONITOR" mode.
- Running engine at 2,000 rpm under no load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: RICH \rightarrow LEAN \rightarrow RICH


2 times: $RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH$

OK or NG

OK >> INSPECTION END

NG (Monitor does not fluctuate.)>>GO TO 24.

NG (Monitor fluctuates less than 5 times.)>>GO TO 31.

22. CHECK HEATED OXYGEN SENSOR 1 (BANK 2) SIGNAL Without CONSULT-II Switch the monitored sensor from bank 1 to bank 2. Refer to EC-66, "How to Switch Monitored Sensor EC from Bank 1 to Bank 2 or Vice Versa". Running engine at 2,000 rpm under no load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds. OK or NG OK >> INSPECTION END NG (MIL does not come on)>>GO TO 24. NG (MIL comes on less than 5 times)>>GO TO 31. 23. CHECK HEATED OXYGEN SENSOR 1 (BANK 1) HARNESS F Turn ignition switch OFF and disconnect battery ground cable. Disconnect ECM harness connector. 3. Disconnect heated oxygen sensor 1 (bank 1) harness connector. Check harness continuity between ECM terminal 114 and heated oxygen sensor 1 (bank 1) terminal 1. Refer to Wiring Diagram, EC-216, "BANK 1". Continuity should exist. 5. Also check harness for short to ground and short to power. OK or NG Н OK >> GO TO 25. NG >> 1. Repair or replace harness between ECM and heated oxygen sensor 1 (bank 1). 2. GO TO 4. 24. CHECK HEATED OXYGEN SENSOR 1 (BANK 2) HARNESS Turn ignition switch OFF and disconnect battery ground cable. 1. 2. Disconnect ECM harness connector. Disconnect heated oxygen sensor 1 (bank 2) harness connector. Check harness continuity between ECM terminal 115 and heated oxygen sensor 1 (bank 2) terminal 1. Refer to Wiring Diagram, EC-218, "BANK 2". Continuity should exist. 5. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 25. M NG >> 1. Repair or replace harness between ECM and heated oxygen sensor 1 (bank 2). 2. GO TO 4. 25. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING Reconnect ECM harness connector and heated oxygen sensor 1 harness connector. Perform EC-44, "Accelerator Pedal Released Position Learning". >> GO TO 26. 26. Perform throttle valve closed position learning

Revision: 2004 October EC-41 2004 M45

Perform EC-44, "Throttle Valve Closed Position Learning".

>> GO TO 27.

27. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-44, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes (With CONSULT-II)>>GO TO 28.

Yes (Without CONSULT-II)>>GO TO 29.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

28. снеск со%

(P) With CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
- 2. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- Select "ENG COOLANT TEMP" in "ACTIVE TEST" mode.
- 4. Set "ENG COOLANT TEMP" to 5°C (41°F) by touching "DOWN" and "Qd".
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed.
- 6. Check CO%.

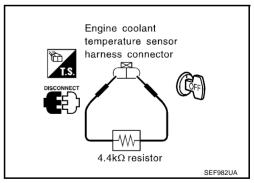
Idle CO: 0.7 – 9.9% and engine runs smoothly.

OK or NG

OK >> GO TO 31. NG >> GO TO 30.

ENG COOLANTTEMP XXX °C MONITOR ENG SPEED XXX rpm INJ PULSE-B1 XXX msec IGN TIMING XXX BTDC

ACTIVE TEST


29. снеск со%

(R) Without CONSULT-II

- 1. Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge.
- 2. Turn ignition switch OFF.
- 3. Disconnect engine coolant temperature sensor harness connector.
- 4. Connect a resistor (4.4 $k\Omega$) between terminals of engine coolant temperature sensor harness connector.
- 5. Start engine and rev it (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed.
- Check CO%.

Idle CO: 0.7 - 9.9% and engine runs smoothly.

 After checking CO%, turn ignition switch OFF, disconnect the resistor from the terminals of engine coolant temperature sensor harness connector, and then connect engine coolant temperature sensor harness connector to engine coolant temperature sensor.

OK or NG

OK >> GO TO 31. NG >> GO TO 30.

30. RECONNECT HEATED OXYGEN SENSOR 1 HARNESS CONNECTOR

- Turn ignition switch OFF.
- Reconnect heated oxygen sensor 1 harness connector.

>> GO TO 34.

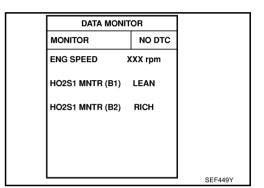
31. REPLACE HEATED OXYGEN SENSOR 1

- 1. Stop engine.
- 2. Replace heated oxygen sensor 1 on the malfunctioning bank.

With CONSULT-II>>GO TO 32. Without CONSULT-II>>GO TO 33.

32. CHECK HEATED OXYGEN SENSOR 1 (BANK 1) / (BANK 2) SIGNAL

(P) With CONSULT-II


- 1. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge.
- 2. See "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode.
- Running engine at 2,000 rpm under no load (The engine is warmed up to normal operating temperature.), check that the monitor fluctuates between LEAN and RICH more than 5 times during 10 seconds.

1 time: $RICH \rightarrow LEAN \rightarrow RICH$

2 times: RICH \rightarrow LEAN \rightarrow RICH \rightarrow LEAN \rightarrow RICH

OK or NG

OK >> GO TO 4. NG >> GO TO 34.

33. Check heated oxygen sensor 1 (bank 1) / (bank 2) signal

⋈ Without CONSULT-II

- Set ECM to Self Diagnostic Test Mode II (Heated oxygen sensor 1 monitor). Refer to <u>EC-65</u>, "HOW TO <u>SWITCH DIAGNOSTIC TEST MODE"</u>.
- 2. Switch the monitored sensor to the malfunctioning bank. Refer to <u>EC-66, "How to Switch Monitored Sensor from Bank 1 to Bank 2 or Vice Versa"</u>.
- 3. Running engine at 2,000 rpm under no load (The engine is warmed up to normal operating temperature.), check that the MIL comes on more than 5 times during 10 seconds.

OK or NG

OK >> GO TO 4. NG >> GO TO 34.

34. DETECT MALFUNCTIONING PART

Check the following.

- Check fuel pressure regulator and repair or replace if necessary. Refer to <u>EC-46</u>.
- Check mass air flow sensor and its circuit, and repair or replace if necessary. Refer to EC-182.
- Check injector and its circuit, and repair or replace if necessary. Refer to <u>EC-661</u>.
- Check engine coolant temperature sensor and its circuit, and repair or replace if necessary. Refer to <u>EC-193</u> and <u>EC-205</u>.

OK or NG

OK >> GO TO 36.

NG >> 1. Repair or replace.

2. GO TO 35.

EC

F

Н

L

IVI

35. erase unnecessary dtc

After this inspection, unnecessary DTC might be displayed.

Erase the stored memory in ECM and TCM. Refer to <u>EC-62</u>, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" and <u>AT-40</u>, "HOW TO ERASE DTC".

>> GO TO 4.

36. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-174, "ECM Re-Communicating Function".

>> GO TO 4.

Accelerator Pedal Released Position Learning DESCRIPTION

ABS002DB

Accelerator Pedal Released Position Learning is an operation to learn the fully released position of the accelerator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time harness connector of accelerator pedal position sensor or ECM is disconnected.

OPERATION PROCEDURE

- 1. Make sure that accelerator pedal is fully released.
- Turn ignition switch ON and wait at least 2 seconds.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and wait at least 2 seconds.
- 5. Turn ignition switch OFF and wait at least 10 seconds.

Throttle Valve Closed Position Learning DESCRIPTION

ABS002DC

Throttle Valve Closed Position Learning is an operation to learn the fully closed position of the throttle valve by monitoring the throttle position sensor output signal. It must be performed each time harness connector of electric throttle control actuator or ECM is disconnected.

OPERATION PROCEDURE

- Make sure that accelerator pedal is fully released.
- 2. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
 Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.

Idle Air Volume Learning DESCRIPTION

ABS002DD

Idle Air Volume Learning is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under any of the following conditions:

- Each time electric throttle control actuator or ECM is replaced.
- Idle speed or ignition timing is out of specification.

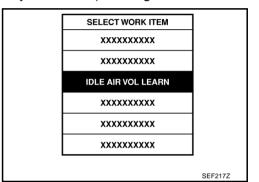
PREPARATION

Before performing Idle Air Volume Learning, make sure that all of the following conditions are satisfied. Learning will be cancelled if any of the following conditions are missed for even a moment.

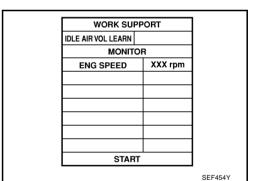
- Battery voltage: More than 12.9V (At idle)
- Engine coolant temperature: 70 99°C (158 210°F)
- Park/neutral position (PNP) switch: ON
- Electric load switch: OFF
 (Air conditioner, headlamp, rear window defogger)

On vehicles equipped with daytime light systems, if the parking brake is applied before the engine is started the headlamp will not be illuminated.

- Steering wheel: Neutral (Straight-ahead position)
- Vehicle speed: Stopped
- Transmission: Warmed-up


For models with CONSULT-II, drive vehicle until "ATF TEMP SE1" in "DATA MONITOR" mode of "A/T" system indicates less than 0.9V.

For models without CONSULT-II, drive vehicle for 10 minutes.


OPERATION PROCEDURE

With CONSULT-II

- Perform EC-44, "Accelerator Pedal Released Position Learning". 1.
- Perform EC-44, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
- Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode.

Touch "START" and wait 20 seconds.

- Make sure that "CMPLT" is displayed on CONSULT-II screen. If "CMPLT" is not displayed, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the DIAGNOSTIC PROCEDURE below.
- 8. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

ITEM	SPECIFICATION				
Idle speed	650 ± 50 rpm (in P or N position)				
Ignition timing	12 ± 5° BTDC (in P or N position)				

_		1
WORK SL	JPPORT	
IDLE AIR VOL LEARN	CMPLT	
MONI	TOR	1
ENG SPEED	XXX rpm	1
		1
		1
		1
		1
		1
		1
STA	<u> </u>	1
		MBIB0238E

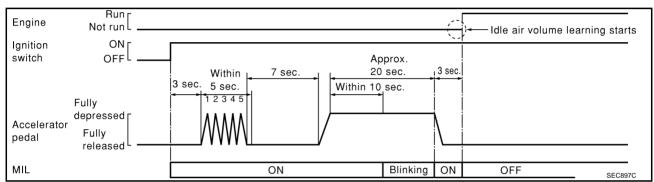
⋈ Without CONSULT-II

NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Perform EC-44. "Accelerator Pedal Released Position Learning".

EC-45 Revision: 2004 October 2004 M45

EC


Α

 D

F

Н

- 2. Perform EC-44, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 7. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- 8. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 20 seconds until the MIL stops blinking and turned ON.
- 9. Fully release the accelerator pedal within 3 seconds after the MIL turned ON.
- 10. Start engine and let it idle.
- 11. Wait 20 seconds.

12. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

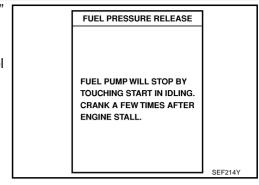
ITEM	SPECIFICATION
Idle speed	650 ± 50 rpm (in P or N position)
Ignition timing	12 ± 5° BTDC (in P or N position)

13. If idle speed and ignition timing are not within the specification, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the DIAGNOSTIC PROCEDURE below.

DIAGNOSTIC PROCEDURE

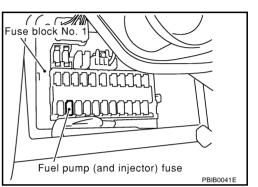
If idle air volume learning cannot be performed successfully, proceed as follows:

- Check that throttle valve is fully closed.
- 2. Check PCV valve operation.
- 3. Check that downstream of throttle valve is free from air leakage.
- 4. When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the incident. It is useful to perform EC-128, "TROUBLE DIAGNOSIS - SPECIFICATION VALUE".
- 5. If any of the following conditions occur after the engine has started, eliminate the cause of the incident and perform Idle Air Volume Learning all over again:
- Engine stalls.
- Erroneous idle.


Fuel Pressure Check FUEL PRESSURE RELEASE

ABS002DE

(P) With CONSULT-II


1. Turn ignition switch ON.

- 2. Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- Turn ignition switch OFF.

⋈ Without CONSULT-II

- 1. Remove fuel pump fuse located in fuse box.
- Start engine.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF.
- 5. Reinstall fuel pump fuse after servicing fuel system.

EC

Α

С

D

F

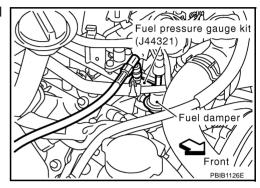
F

G

Н

K

L

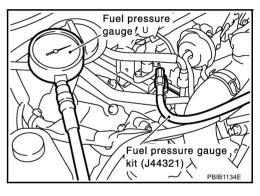

FUEL PRESSURE CHECK

CAUTION:

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

NOTE:

- Use Fuel Pressure Gauge Kit (J-44321) to check fuel pressure.
- Prepare pans or saucers under the disconnected fuel line because the fuel may spill out. The fuel pressure cannot be released because Y34 models do not have fuel return system.
- 1. Release fuel pressure to zero. Refer to EC-46, "FUEL PRESSURE RELEASE".
- Install the inline fuel quick disconnected fitting between fuel damper and injector tube.


- 3. Connect the fuel pressure test gauge (quick connector adapter hose) to the inline fuel quick disconnected fitting.
- 4. Turn ignition switch ON and check for fuel leakage.
- Start engine and check for fuel leakage.
- 6. Read the indication of fuel pressure gauge.

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

- 7. If result is unsatisfactory, go to next step.
- 8. Check the following.
 - Fuel hoses and fuel tubes for clogging
 - Fuel filter for clogging
 - Fuel pump
 - Fuel pressure regulator for clogging

If OK, replace fuel pressure regulator.

If NG, repair or replace.

ON BOARD DIAGNOSTIC (OBD) SYSTEM

PFP:00028

Introduction

ABS002DF

Α

EC

F

Н

M

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Emission-related diagnostic information	SAE Mode
Diagnostic Trouble Code (DTC)	Mode 3 of SAE J1979
Freeze Frame data	Mode 2 of SAE J1979
System Readiness Test (SRT) code	Mode 1 of SAE J1979
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Mode 7 of SAE J1979
1st Trip Freeze Frame data	
Test values and Test limits	Mode 6 of SAE J1979
Calibration ID	Mode 9 of SAE J1979

The above information can be checked using procedures listed in the table below.

					×: Applicable –	-: Not applicable
	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value
CONSULT-II	×	×	×	×	×	_
GST	×	×*1	×	_	×	×
ECM	×	×* ²	_	_	_	_

^{*1: 1}st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-80.)

Two Trip Detection Logic

ABS002DG

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

×: Applicable —: Not applicable

		MIL				DTC		1st trip DTC	
Items	1s	t trip	2nd	2nd trip		2nd trip	1 ot trip	2nd trip	
	Blinking	Lighting up	Blinking	Lighting up	1st trip displaying	displaying	1st trip displaying	display- ing	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0308 is being detected	×	_	_	_	_	_	×	_	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0308 is being detected	P0300 -		_	_	×	_	_		
One trip detection diagnoses (Refer to <u>EC-9</u> .)	_	×	_	_	×	_	_	_	
Except above	_	_	_	×	_	×	×	_	

^{*2:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

Emission-Related Diagnostic Information EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

ABS002DH

×:Applicable —: Not applicable

Items	DTC	*1		Test value/		Reference
(CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	SRT code	Test limit (GST only)	1st trip DTC	page
CAN COMM CIRCUIT	U1000	1000* ⁵	_	_	_	EC-143
CAN COMM CIRCUIT	U1001	1001* ⁵	_	_	×	EC-143
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_	_
INT/V TIM CONT-B1	P0011	0011	_	_	×	EC-146
INT/V TIM CONT-B2	P0021	0021	_	_	×	EC-146
HO2S1 HTR (B1)	P0031	0031	×	×	×* ⁴	EC-157
HO2S1 HTR (B1)	P0032	0032	×	×	×* ⁴	EC-157
HO2S2 HTR (B1)	P0037	0037	×	×	×* ⁴	EC-165
HO2S2 HTR (B1)	P0038	0038	×	×	×* ⁴	EC-165
HO2S1 HTR (B2)	P0051	0051	×	×	×* ⁴	EC-157
HO2S1 HTR (B2)	P0052	0052	×	×	×* ⁴	EC-157
HO2S2 HTR (B2)	P0057	0057	×	×	×* ⁴	EC-165
HO2S2 HTR (B2)	P0058	0058	×	×	×* ⁴	EC-165
MAF SEN/CIRCUIT	P0101	0101	_	_	_	EC-174
MAF SEN/CIRCUIT	P0102	0102	_	_		EC-182
MAF SEN/CIRCUIT	P0103	0103	_	_	_	EC-182
IAT SEN/CIRCUIT	P0112	0112	_	_	×	EC-189
IAT SEN/CIRCUIT	P0113	0113	_	_	×	EC-189
ECT SEN/CIRC	P0117	0117	_	_	_	EC-193
ECT SEN/CIRC	P0118	0118	_	_	_	EC-193
TP SEN2/CIRC	P0122	0122	_	_	_	EC-199
TP SEN2/CIRC	P0123	0123	_	_	_	EC-199
ECT SENSOR	P0125	0125	_	_	_	EC-205
IAT SENSOR	P0127	0127	_	_	×	EC-208
THERMSTAT FNCTN	P0128	0128	_	_	×	EC-212
HO2S1 (B1)	P0132	0132	_	×	×	EC-214
HO2S1 (B1)	P0133	0133	×	×	×* ⁴	EC-224
HO2S1 (B1)	P0134	0134	_	×	×	EC-236
HO2S2 (B1)	P0138	0138	_	×	×	EC-245
HO2S2 (B1)	P0139	0139	×	×	×* ⁴	EC-254
HO2S1 (B2)	P0152	0152	_	×	×	EC-214
HO2S1 (B2)	P0153	0153	×	×	×* ⁴	EC-224
HO2S1 (B2)	P0154	0154	_	×	×	EC-236
HO2S2 (B2)	P0158	0158	_	×	×	EC-245
HO2S2 (B2)	P0159	0159	×	×	×* ⁴	EC-254
FUEL SYS-LEAN-B1	P0171	0171	_	_	×	EC-266

ltomo	DTC	*1		Test value/		Doforonce	
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	SRT code	Test limit (GST only)	1st trip DTC	Reference page	
FUEL SYS-RICH-B1	P0172	0172	_	_	×	EC-275	
FUEL SYS-LEAN-B2	P0174	0174	_	_	×	EC-266	
FUEL SYS-RICH-B2	P0175	0175	_	_	×	EC-275	
FTT SENSOR	P0181	0181	_	_	×	EC-283	
FTT SEN/CIRCUIT	P0182	0182	_	_	×	EC-288	
FTT SEN/CIRCUIT	P0183	0183	_	_	×	EC-288	
TP SEN 1/CIRC	P0222	0222	_	_	_	EC-292	
TP SEN 1/CIRC	P0223	0223	_	_	_	EC-292	
MULTI CYL MISFIRE	P0300	0300	_	_	×	EC-298	
CYL 1 MISFIRE	P0301	0301	_	_	×	EC-298	
CYL 2 MISFIRE	P0302	0302	_	_	×	EC-298	
CYL 3 MISFIRE	P0303	0303	_	_	×	EC-298	
CYL 4 MISFIRE	P0304	0304	_	_	×	EC-298	
CYL 5 MISFIRE	P0305	0305	_	_	×	EC-298	
CYL 6 MISFIRE	P0306	0306	_	_	×	EC-298	
CYL 7 MISFIRE	P0307	0307	_	_	×	EC-298	
CYL 8 MISFIRE	P0308	0308	_	_	×	EC-298	
KNOCK SEN/CIRC-B1	P0327	0327	_	_	×	EC-304	
KNOCK SEN/CIRC-B1	P0328	0328	_	_	×	EC-304	
KNOCK SEN/CIRC-B2	P0332	0332	_	_	×	EC-304	
KNOCK SEN/CIRC-B2	P0333	0333	_	_	×	EC-304	
CKP SEN/CIRCUIT	P0335	0335	_	_	×	EC-309	
CMP SEN/CIRC-B1	P0340	0340	_	_	×	EC-317	
TW CATALYST SYS-B1	P0420	0420	×	×	×* ⁴	EC-322	
TW CATALYST SYS-B2	P0430	0430	×	×	×*4	EC-322	
EVAP PURG FLOW/MON	P0441	0441	×	×	×* ⁴	EC-327	
EVAP SMALL LEAK	P0442	0442	×	×	×* ⁴	EC-333	
PURG VOLUME CONT/V	P0444	0444	_	_	×	EC-342	
PURG VOLUME CONT/V	P0445	0445	_	_	×	EC-342	
VENT CONTROL VALVE	P0447	0447	_	_	×	EC-348	
EVAP SYS PRES SEN	P0452	0452	_	_	×	EC-355	
EVAP SYS PRES SEN	P0453	0453	_	_	×	EC-362	
EVAP GROSS LEAK	P0455	0455	_	_	×	EC-370	
EVAP VERY SML LEAK	P0456	0456	×* ⁶	×	×* ⁴	EC-378	
FUEL LEV SEN SLOSH	P0460	0460	_	_	×	EC-387	
FUEL LEVEL SENSOR	P0461	0461	_	_	×	EC-392	
FUEL LEVL SEN/CIRC	P0462	0462	_	_	×	EC-394	
FUEL LEVL SEN/CIRC	P0463	0463	_	_	×	EC-394	
VEH SPEED SEN/CIRC*5	P0500	0500	_	_	×	EC-399	
ISC SYSTEM	P0506	0506	_	_	×	EC-401	
ISC SYSTEM	P0507	0507	_	_	×	EC-403	

Revision: 2004 October **EC-51** 2004 M45

EC

С

F

G

Н

1

K

L

VI

ltomo	DTC	_* 1		Test value/		Deference	
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM*3	SRT code	Test limit (GST only)	1st trip DTC	Reference page	
PW ST P SEN/CIRC	P0550	0550	_	_	×	EC-405	
ECM	P0605	0605	_	_	× or —	EC-410	
MIL/CIRC	P0650	0650	_	_	×	EC-413	
PNP SW/CIRC	P0705	0705	_	_	×	<u>AT-110</u>	
ATF TEMP SEN/CIRC	P0710	0710	_	_	×	AT-154	
VEH SPD SEN/CIR AT	P0720	0720	_	_	×	<u>AT-116</u>	
TCC SOLENOID/CIRC	P0740	0740	_	_	×	<u>AT-123</u>	
A/T TCC S/V FNCTN	P0744	0744	_	_	×	<u>AT-128</u>	
L/PRESS SOL/CIRC	P0745	0745	_	_	×	<u>AT-134</u>	
ECM BACK UP/CIRC	P1065	1065	_	_	×	EC-418	
MAF SENSOR	P1102	1102	_	_	_	EC-422	
INT/V TIM V/CIR-B1	P1111	1111	_	_	×	EC-428	
RADI TEMP SEN/CIRC	P1119	1119	_	_	_	EC-434	
ETC ACTR	P1121	1121	_	_	_	EC-440	
ETC FUNCTION/CIRC	P1122	1122	_	_	_	EC-442	
ETC MOT PWR	P1124	1124	_	_	_	EC-449	
ETC MOT PWR	P1126	1126	_	_	_	EC-449	
ETC MOT	P1128	1128	_	_	_	EC-455	
INT/V TIM V/CIR-B2	P1136	1136	_	_	×	EC-428	
INTK TIM S/CIRC-B1	P1140	1140	_	_	×	EC-460	
HO2S1 (B1)	P1143	1143	×	×	×* ⁴	EC-468	
HO2S1 (B1)	P1144	1144	×	×	×* ⁴	EC-474	
INTK TIM S/CIRC-B2	P1145	1145	_	_	×	EC-460	
HO2S2 (B1)	P1146	1146	×	×	×* ⁴	EC-481	
HO2S2 (B1)	P1147	1147	×	×	×* ⁴	EC-493	
CLOSED LOOP-B1	P1148	1148	_	_	_	EC-505	
HO2S1 (B2)	P1163	1163	×	×	×* ⁴	EC-468	
HO2S1 (B2)	P1164	1164	×	×	×* ⁴	EC-474	
HO2S2 (B2)	P1166	1166	×	×	×* ⁴	EC-481	
HO2S2 (B2)	P1167	1167	×	×	×* ⁴	EC-493	
CLOSED LOOP-B2	P1168	1168	_	_	_	EC-505	
TCS C/U FUNCTN	P1211	1211	_	_	×	EC-507	
TCS/CIRC	P1212	1212	_	_	×	EC-508	
ENG OVER TEMP	P1217	1217	_	_	_	EC-509	
FPCM/CIRCUIT	P1220	1220	_	_	×	EC-519	
CTP LEARNING	P1225	1225	_	_	×	EC-527	
CTP LEARNING	P1226	1226	_	_	×	EC-529	
SENSOR POWER/CIRC	P1229	1229	_	_	_	EC-531	
EVAP SMALL LEAK	P1442	1442	×	×	×* ⁴	EC-535	
PURG VOLUME CONT/V	P1444	1444	_	_	×	EC-544	
VENT CONTROL VALVE	P1446	1446	_	_	×	EC-552	

Α

F

Н

M

Items	DTC	;*1		Test value/		Reference	
(CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	SRT code	Test limit (GST only)	1st trip DTC	page	
VENT CONTROL VALVE	P1448	1448	1	_	×	EC-558	
EVAP VERY SML LEAK	P1456	1456	×* ⁶	×	×* ⁴	EC-565	
FUEL LEVEL SEN/CIRC	P1464	1464	_	_	×	EC-574	
FAN CONT S/V CIRC	P1480	1480	_	_	_	EC-578	
VC/V BYPASS/V	P1490	1490	_	_	×	EC-584	
VC CUT/V BYPASS/V	P1491	1491	_	_	×	EC-590	
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	_	_	×	BL-172	
P-N POS SW/CIRCUIT	P1706	1706	_	_	×	EC-600	
ATF TEMP SEN/CIRC	P1710	1710	_	_	×	<u>AT-154</u>	
TURBINE REV S/CIRC	P1716	1716	_	_	×	<u>AT-160</u>	
VSP SEN(A/T OUT)	P1720	1720	_	_	×	EC-606	
A/T INTERLOCK	P1730	1730	_	_	_	<u>AT-167</u>	
I/C SOLENOID/CIRC	P1752	1752	_	_	_	<u>AT-179</u>	
I/C SOLENOID FNCTN	P1754	1754		_	_	<u>AT-185</u>	
FR/B SOLENOID/CIRC	P1757	1757		_	_	<u>AT-189</u>	
FR/B SOLENOID/CIRC	P1759	1759	_	_	_	<u>AT-194</u>	
D/C SOLENOID/CIRC	P1762	1762		_	_	<u>AT-199</u>	
D/C SOLENOID FNCTN	P1764	1764		_	_	AT-205	
HLR/C SOL/CIRC	P1767	1767	_	_	_	<u>AT-209</u>	
HLR/C SOL FNCTN	P1769	1769	_	_	_	<u>AT-215</u>	
LC/B SOLENOID/CIRC	P1772	1772		_	_	<u>AT-220</u>	
LC/B SOLENOID FNCT	P1774	1774		_	_	<u>AT-226</u>	
SHIFT SIG FNCTN	P1780	1780	_	_	×	EC-608	
BRAKE SW/CIRCUIT	P1805	1805	_	_	×	EC-610	
APP SEN 1/CIRC	P2122	2122	_	_	_	EC-615	
APP SEN 1/CIRC	P2123	2123	_	_	_	EC-615	
APP SEN 2/CIRC	P2127	2127	_	_	_	EC-621	
APP SEN 2/CIRC	P2128	2128	_	_	_	EC-621	
TP SENSOR	P2135	2135	_	_	_	EC-627	
APP SENSOR	P2138	2138	_	_	_	EC-634	

^{*1: 1}st trip DTC No. is the same as DTC No.

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd

^{*2:} These numbers are prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} This is not displayed with GST.

^{*5:} The trouble shooting for this DTC needs CONSULT-II.

^{*6:} SRT code will not be set if the self-diagnostic results is NG.

trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in <u>EC-62</u>, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"

For malfunctions in which 1st trip DTCs are displayed, refer to EC-50, "EMISSION-RELATED DIAGNOSTIC <a href="INFORMATION ITEMS". These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in Work Flow procedure Step II, refer to EC-74, "WORK FLOW". Then perform DTC Confirmation Procedure or Overall Function Check to try to duplicate the malfunction. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

- (P) With CONSULT-II
- With GST

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1148, P1706, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

No Tools

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC. Example: 0340, 1148, 1706, etc.

These DTCs are controlled by NISSAN.

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST or the Diagnostic Test Mode II do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be [0].

If a 1st trip DTC is stored in the ECM, the time data will be [1t].

	SELF DIAG RESULTS		[SELF DIAG RES	ULTS
	DTC RESULTS	TIME		DTC RESULTS	TIME
DTC	CKP SEN/CIRCUIT [P0335]	0	1st trip	CKP SEN/CIRCUIT [P0335]	1t
display			DTC display		

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see <u>EC-54, "FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA".</u>

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no

longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Α

EC

M

Priority		Items		
1	Freeze frame data	Misfire — DTC: P0300 - P0308 Fuel Injection System Function — DTC: P0171, P0172, P0174, P0175		
2		Except the above items (Includes A/T related items)		
3	1st trip freeze frame data			

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in EC-50, "EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS".

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

If MIL is ON during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-II indica- tion)	Perfor- mance Pri- ority*	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	2	Three way catalyst function	P0420, P0430
	1	EVAP control system	P0442, P1442
EVAP SYSTEM	2	EVAP control system	P0456, P1456
	2	EVAP control system purge flow monitoring	P0441

SRT item (CONSULT-II indication)	Perfor- mance Pri- ority*	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
		Heated oxygen sensor 1	P0133, P0153
	2	Heated oxygen sensor 1	P1143, P1163
HO2S		Heated oxygen sensor 1	P1144, P1164
11023		Heated oxygen sensor 2	P0139, P0159
		Heated oxygen sensor 2	P1146, P1166
		Heated oxygen sensor 2	P1147, P1167
HO2S HTR	2	Heated oxygen sensor 1 heater	P0031, P0032, P0051, P0052
		Heated oxygen sensor 2 heater	P0037, P0038, P0057, P0058

^{*:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below

Self-diagnostic results				Example		
		Diagnosis	← ON → OI		on cycle $OFF \leftarrow ON ightarrow 0$	$OFF \leftarrow ON \rightarrow$
		P0400	OK (1)	— (1)	OK (2)	— (2)
	Case 1	P0402	OK (1)	— (1)	— (1)	OK (2)
	Case I	P1402	OK (1)	OK (2)	— (2)	— (2)
All OK		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"
	Case 2	P0400	OK (1)	— (1)	— (1)	— (1)
		P0402	— (0)	— (0)	OK (1)	—(1)
		P1402	OK (1)	OK (2)	— (2)	— (2)
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"
		P0400	OK	OK	_	_
		P0402	_	_	_	_
NG exists	Case 3	P1402	NG	_	NG	NG (Consecutive NG)
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON")
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is NG.

When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". → Case 1 above

When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. \rightarrow Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". → Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary for each self-diagnosis to be executed twice (Case 3) for the following reasons:

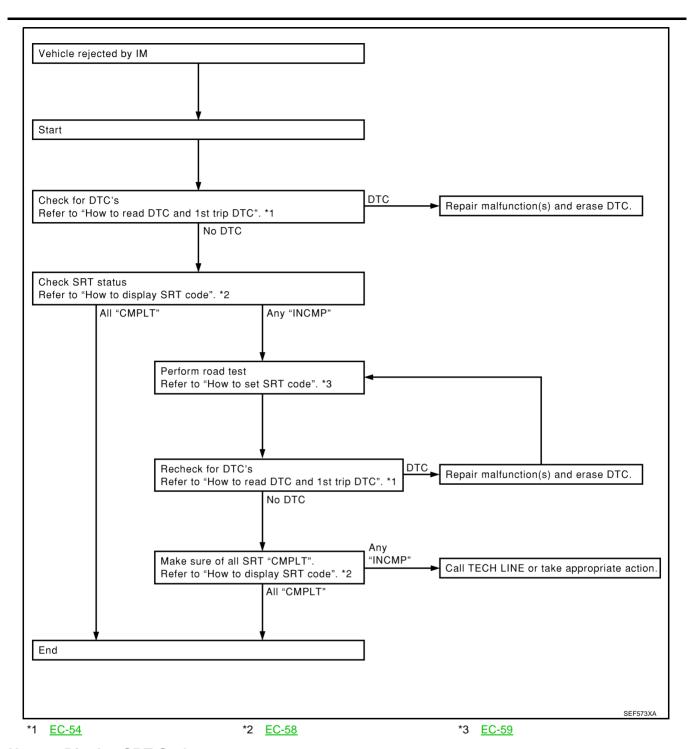
- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.


EC-57 Revision: 2004 October 2004 M45

EC

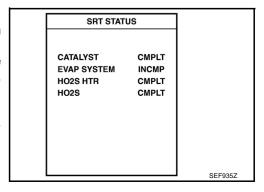
F

Н

^{-:} Self-diagnosis is not carried out.

How to Display SRT Code

(II) WITH CONSULT-II


Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

A sample of CONSULT-II display for SRT code is shown in figure. "INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

WITH GST

Selecting Mode 1 with GST (Generic Scan Tool)

How to Set SRT Code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

(II) WITH CONSULT-II

Perform corresponding DTC Confirmation Procedure one by one based on Performance Priority in the table on <u>EC-55, "SRT Item"</u>.

W WITHOUT CONSULT-II

The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

EC

D

Е

F

G

Н

K

٢

Driving Pattern 20 (minutes) ♣ Pattern 4 8 1 16 5 4 5 ş 4

The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.

Zone A refers to the range where the time, required for the diagnosis under normal conditions*, is the

Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.

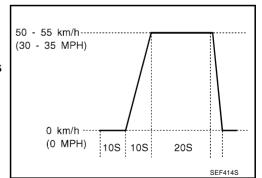
*: Normal conditions refer to the following:

- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions. Under different conditions [For example: ambient air temperature other than 20 - 30°C (68 - 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of -10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 121 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 121 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 92 and ground is less than 4.1V).

Pattern 2:


When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- Repeat driving pattern shown at right at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.
- *3: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position

Set the selector lever in the D position.

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is OK or NG while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

EC

Α

F

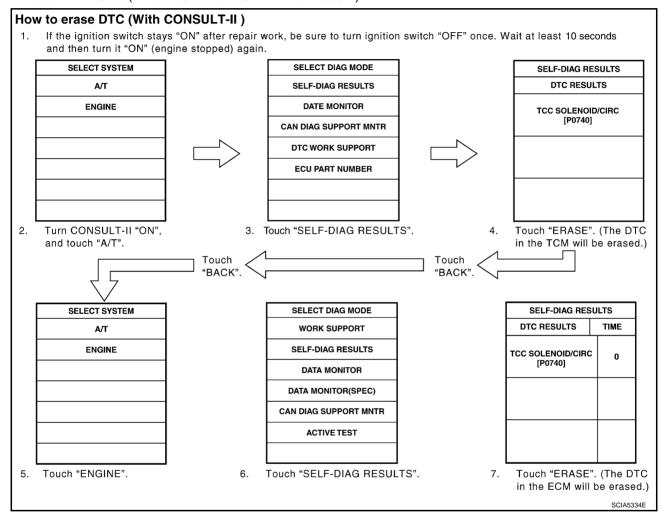
Н

SRT item	Self-diagnostic test item	DTC	Test value (GST display)		Test limit	Conversion
			TID	CID		
CATALYST Three	Three way catalyst function (Bank 1)	P0420	01H	01H	Max.	1/128
CATALTST	Three way catalyst function (Bank 1)	P0420	02H	81H	Min.	1
CATALYST	Three way catalyst function (Bank 2)	P0430	03H	02H	Max.	1/128
CATALIST	Three way catalyst function (Bank 2)	P0430	04H	82H	Min.	1
	EVAP control system (Small leak)	P0442	05H	03H	Max.	1/128 mm ²
EVAP	EVAP control system purge flow monitoring	P0441	06H	83H	Min.	20 mV
SYSTEM	EVAD control system (Vary arrell legt)	P0456	07H	03H	Max.	1/128 mm ²
	EVAP control system (Very small leak)	P1456	07H	03H	Max.	1/128 mm ²
		P0133	09H	04H	Max.	16 ms
		P1143	0AH	84H	Min.	10 mV
	Heated oxygen sensor 1 (Bank 1)	P1144	0BH	04H	Max.	10 mV
		P0132	0CH	04H	Max.	10 mV
		P0134	0DH	04H	Max.	1s
		P0153	11H	05H	Max.	16 ms
		P1163	12H	85H	Min.	10 mV
	Heated oxygen sensor 1 (Bank 2)	P1164	13H	05H	Max.	10 mV
HO2S		P0152	14H	05H	Max.	10 mV
ПО23		P0154	15H	05H	Max.	1s
		P0139	19H	86H	Min.	10 mV/500 ms
	Heated evergen concer 2 (Penk 1)	P1147	1AH	86H	Min.	10 mV
	Heated oxygen sensor 2 (Bank 1)	P1146	1BH	06H	Max.	10 mV
		P0138	1CH	06H	Max.	10 mV
		P0159	21H	87H	Min.	10 mV/500 ms
	Heated oxygen sensor 2 (Bank 2)	P1167	22H	87H	Min.	10 mV
	rieated oxygen sensor 2 (bank 2)	P1166	23H	07H	Max.	10 mV
		P0158	24H	07H	Max.	10 mV
	Heated oxygen sensor 1 heater (Bank 1)	P0032	29H	08H	Max.	20 mV
	Heated Oxygen Sensor Theater (Bank 1)	P0031	2AH	88H	Min.	20 mV
	Heated oxygen sensor 1 heater (Bank 2)	P0052	2BH	09H	Max.	20 mV
HO2S HTR	Heater oxygen sensor i fleater (Dank 2)	P0051	2CH	89H	Min.	20 mV
HUZS HIK	Heated oxygen sensor 2 heater (Bank 1)	P0038	2DH	0AH	Max.	20 mV
	r reateu oxygen sensor z neater (Dank I)	P0037	2EH	8AH	Min.	20 mV
	Heated oxygen sensor 2 (Bank 2)	P0058	2FH	0BH	Max.	20 mV
	i leateu oxygeri serisor z (darik z)	P0057	30H	8BH	Min.	20 mV

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION How to Erase DTC

(II) WITH CONSULT-II

The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.


If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).

NOTE

If the DTC is not for A/T related items (see EC-9, "INDEX FOR DTC"), skip steps 2 through 4.

Revision: 2004 October EC-62 2004 M45

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- 2. Turn CONSULT-II "ON" and touch "A/T".
- 3. Touch "SELF-DIAG RESULTS".
- Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5. Touch "ENGINE".
- 6. Touch "SELF-DIAG RESULTS".
- 7. Touch "ERASE". (The DTC in the ECM will be erased.)

With GST

The emission related diagnostic information in the ECM can be erased by selecting Mode 4 with GST.

NOTE:

If the DTC is not for A/T related items (see EC-9, "INDEX FOR DTC"), skip step 2.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- Perform AT-41, "HOW TO ERASE DTC (WITH GST)". (The DTC in the TCM will be erased.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

NO Tools

NOTE:

If the DTC is not for A/T related items (see EC-9, "INDEX FOR DTC"), skip step 2.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- 2. Perform AT-42, "HOW TO ERASE DTC (NO TOOLS)". (The DTC in the TCM will be erased.)

Revision: 2004 October EC-63 2004 M45

EC

Α

D

G

Н

K

ı

- Change the diagnostic test mode from Mode II to Mode I by depressing the accelerator pedal. Refer to EC-65, "HOW TO SWITCH DIAGNOSTIC TEST MODE".
- If the battery is disconnected, the emission-related diagnostic information will be lost within 24
- The following data are cleared when the ECM memory is erased.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values

IVIS/NVIS.

Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

IVIS (Infiniti Vehicle Immobilizer System — NATS)

ABS002DI

- If the security indicator lights up with the ignition switch in the ON position or "NATS MALFUNCTION" is displayed on "SELF-DIAG RESULTS" screen, perform self-diagnostic results mode with CONSULT-II using NATS program card. Refer to <u>BL-172</u>, "IVIS (INFINITI VEHICLE IMMOBILIZER SYSTEM-NATS)".
- Confirm no self-diagnostic results of IVIS (NATS) is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT-II.
- When replacing ECM, initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs must be carried out with CONSULT-II using NATS program card.

SEF543X Therefore, be sure to receive all keys from vehicle owner. Regarding the procedures of IVIS (NATS) initialization and all IVIS (NATS) ignition key ID registration, refer to CONSULT-II Operation Manual,

Malfunction Indicator Lamp (MIL) **DESCRIPTION**

ABS002DJ

The MIL is located on the instrument panel.

- The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check. If the MIL does not light up, refer to EC-413, "DTC P0650 MIL" or see DI-25, "WARNING LAMPS".
- 2. When the engine is started, the MIL should go off. If the MIL remains on, the on board diagnostic system has detected an engine system malfunction.

SELF DIAG RESULTS

n

DTC RESULTS

NATS MALFUNCTION

[P1610]

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following four functions.

Diagnostic Test	KEY and ENG.	Function	Explanation of Function	
Mode	Status	DUI D OUEOU		EC
Mode I	Ignition switch in ON position	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.).	
	CON		If the MIL does not come on, check MIL circuit.	С
	Engine stopped			
				D
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver	E
			that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip.	F
			Misfire (Possible three way catalyst damage)	
			One trip detection diagnoses	G
Mode II	Ignition switch in ON position	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.	
	CON			Н
	Engine stopped			I
	Engine running	HEATED OXYGEN SENSOR 1 MONITOR	This function allows the fuel mixture condition (lean or rich), monitored by heated oxygen sensor 1, to be read.	J

M

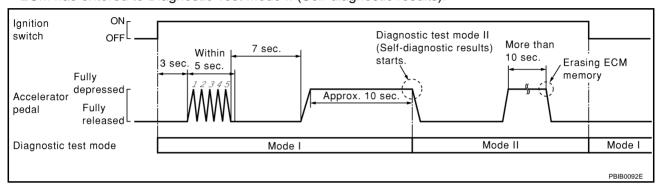
MIL Flashing Without DTC

If the ECM is in Diagnostic Test Mode II, MIL may flash when engine is running. In this case, check ECM diagnostic test mode. EC-65, "HOW TO SWITCH DIAGNOSTIC TEST MODE".

How to switch the diagnostic test (function) modes, and details of the above functions are described later. EC-65, "HOW TO SWITCH DIAGNOSTIC TEST MODE".

The following emission-related diagnostic information is cleared when the ECM memory is erased.

- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
- Others


HOW TO SWITCH DIAGNOSTIC TEST MODE

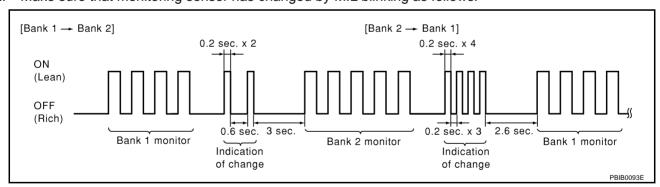
NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Always ECM returns to Diagnostic Test Mode I after ignition switch is turned OFF.

How to Set Diagnostic Test Mode II (Self-Diagnostic Results)

- 1. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 2. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 10 seconds until the MIL starts blinking.
- Fully release the accelerator pedal.
 ECM has entered to Diagnostic Test Mode II (Self-diagnostic results).

How to Set Diagnostic Test Mode II (Heated Oxygen Sensor 1 Monitor)


- Set the ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to <u>EC-66</u>, "How to <u>Set Diagnostic Test Mode II (Self-Diagnostic Results)"</u>.
- 2. Start Engine.

ECM has entered to Diagnostic Test Mode II (Heated oxygen sensor 1 monitor).

ECM will start heated oxygen sensor 1 monitoring from the bank 1 sensor.

How to Switch Monitored Sensor from Bank 1 to Bank 2 or Vice Versa

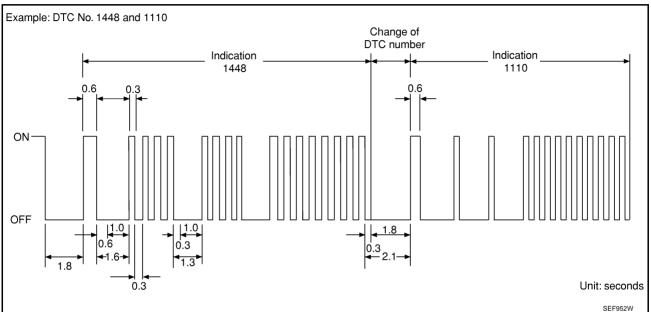
- 1. Fully depress the accelerator pedal quickly and then release it immediately.
- 2. Make sure that monitoring sensor has changed by MIL blinking as follows.

How to Erase Diagnostic Test Mode II (Self-Diagnostic Results)

- 1. Set ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to <u>EC-66, "How to Set Diagnostic Test Mode II (Self-Diagnostic Results)"</u>.
- Fully depress the accelerator pedal and keep it for more than 10 seconds.The emission-related diagnostic information has been erased from the backup memory in the ECM.
- Fully release the accelerator pedal, and confirm the DTC 0000 is displayed.

DIAGNOSTIC TEST MODE I — BULB CHECK

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to EC-413, "DTC P0650 MIL" or see DI-25, "WARNING LAMPS".


DIAGNOSTIC TEST MODE I — MALFUNCTION WARNING

MIL	Condition		
ON	When the malfunction is detected.		
OFF	No malfunction.		

These DTC numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS)

DIAGNOSTIC TEST MODE II — SELF-DIAGNOSTIC RESULTS

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the CONSULT-II or GST. A DTC will be used as an example for how to read a code.

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The length of time the 1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second) - OFF (0.6-second) cycle.

The 100th-digit numeral and lower digit numerals consist of a 0.3-second ON and 0.3-second OFF cycle.

A change from one digit numeral to another occurs at an interval of 1.0-second OFF. In other words, the later numeral appears on the display 1.3 seconds after the former numeral has disappeared.

A change from one trouble code to another occurs at an interval of 1.8-second OFF.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC "0000" refers to no malfunction. (See EC-9, "INDEX FOR DTC")

How to Erase Diagnostic Test Mode II (Self-Diagnostic Results)

The DTC can be erased from the back up memory in the ECM by depressing accelerator pedal. Refer to EC-66, "How to Erase Diagnostic Test Mode II (Self-Diagnostic Results)".

- If the battery is disconnected, the DTC will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

DIAGNOSTIC TEST MODE II — HEATED OXYGEN SENSOR 1 MONITOR

In this mode, the MIL displays the condition of the fuel mixture (lean or rich) which is monitored by the heated oxygen sensor 1.

MIL	Fuel mixture condition in the exhaust gas	Air fuel ratio feedback control condition	
ON	Lean	Closed loop system	
OFF	Rich	Closed loop system	
*Remains ON or OFF	Any condition Open loop system		

^{*:} Maintains conditions just before switching to open loop.

To check the heated oxygen sensor 1 function, start engine in the Diagnostic Test Mode II and warm it up until engine coolant temperature indicator points to the middle of the gauge.

Next run engine at about 2,000 rpm for about 2 minutes under no load conditions. Then make sure that the MIL comes ON more than 5 times within 10 seconds with engine running at 2,000 rpm under no load.

Revision: 2004 October EC-67 2004 M45

EC

Α

С

F

G

Н

I

Κ

L

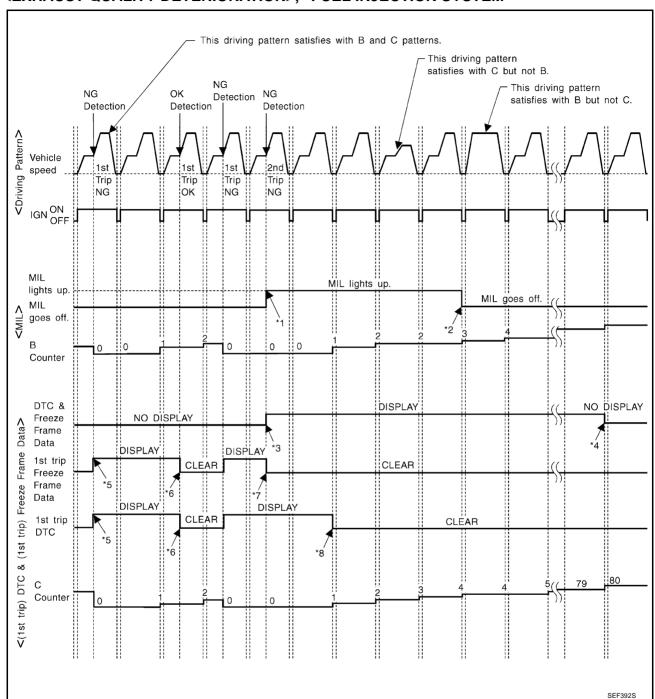
OBD System Operation Chart RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

ABS002DK

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to EC-49, "Two Trip Detection Logic".
- The MIL will go off after the vehicle is driven 3 times (driving pattern B) with no malfunction. The drive is counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting, the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

SUMMARY CHART

Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)


For details about patterns B and C under "Fuel Injection System" and "Misfire", see $\underline{\text{EC-}70}$.

For details about patterns A and B under "Other", see EC-72.

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE " <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.

Α

EC

*6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

<Driving Pattern C>

Driving pattern C means the vehicle operation as follows:

The following conditions should be satisfied at the same time:

Engine speed: (Engine speed in the freeze frame data) ±375 rpm

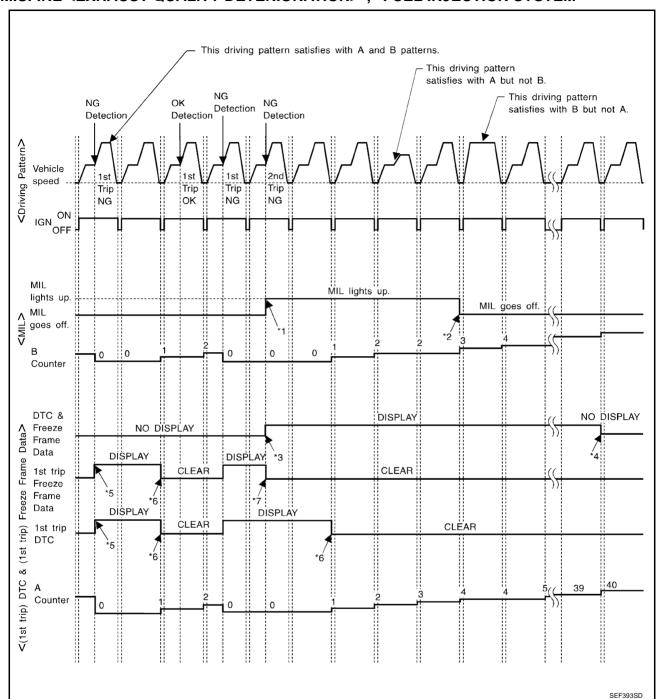
Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%]

Engine coolant temperature (T) condition:

- When the freeze frame data shows lower than 70°C (158°F), T should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:


Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of vehicle conditions above.
- The C counter will be counted up when vehicle conditions above is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

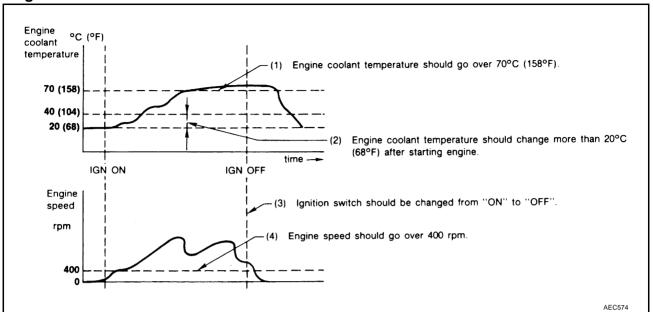
- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction.

 (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.

EC

Α


Е

J

K

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

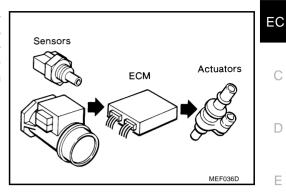
<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

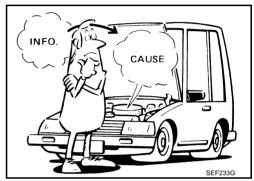
All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD SYSTEM OPERATION CHART").

TROUBLE DIAGNOSIS


PFP:00004

ABS002DL


Α

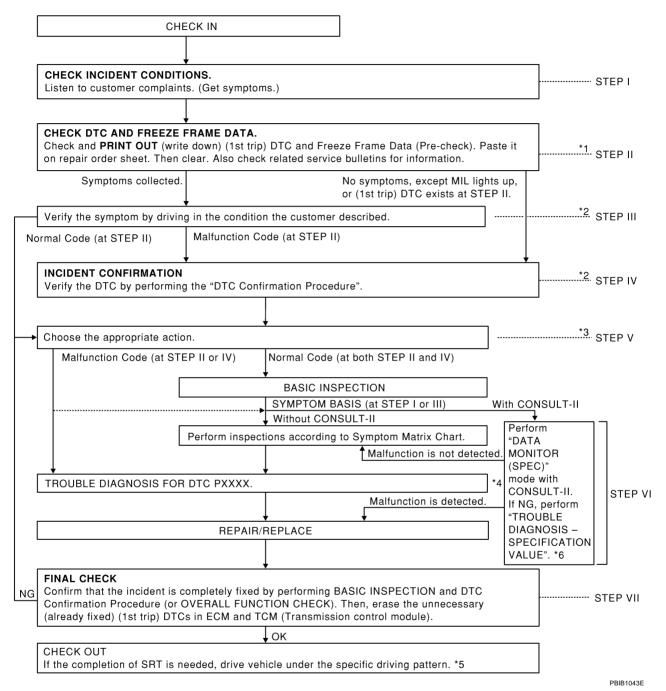
Trouble Diagnosis Introduction INTRODUCTION

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no incidents such as vacuum leaks, fouled spark plugs, or other incidents with the engine.

It is much more difficult to diagnose an incident that occurs intermittently rather than continuously. Most intermittent incidents are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the incidents. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the Work Flow on EC-74.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such incidents, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A Diagnostic Worksheet like the example on $\underline{\text{EC-76}}$ should be used.


Start your diagnosis by looking for conventional malfunctions first. This will help troubleshoot driveability malfunctions on an electronically controlled engine vehicle.

M

Revision: 2004 October EC-73 2004 M45

WORK FLOW Flow Chart

- *1 If time data of "SELF-DIAG RESULTS" is other than[0] or [1t], perform <u>EC-132</u>, "TROUBLE DIAG-NOSIS FOR INTERMITTENT INCI-DENT".
- *4 If malfunctioning part cannot be detected, perform <u>EC-132</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".
- 2 If the incident cannot be verified, per- *3 form <u>EC-132</u>, "TROUBLE DIAGNO-SIS FOR INTERMITTENT INCIDENT".
- *5 EC-60, "Driving Pattern"
- If the on board diagnostic system cannot be performed, check main power supply and ground circuit.

 Refer to EC-133, "POWER SUPPLY AND GROUND CIRCUIT".
- *6 <u>EC-128, "TROUBLE DIAGNOSIS SPECIFICATION VALUE"</u>

STEP	DESCRIPTION
STEPI	Get detailed information about the conditions and the environment when the incident/symptom occurred using the <u>EC-76. "DIAGNOSTIC WORKSHEET"</u> .
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or GST) the (1st trip) DTC and the (1st trip) freeze frame data, then erase the DTC and the data. (Refer to EC-62, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. If the incident cannot be verified, perform EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The Symptom Matrix Chart will be useful. See EC-86, "Symptom Matrix Chart".) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The DIAGNOSTIC WORK SHEET and the freeze frame data are useful to verify the incident. Connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform EC-132 , "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) DTC by driving in (or performing) the DTC Confirmation Procedure. Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or GST. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform EC-132 , "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". In case the DTC Confirmation Procedure is not available, perform the Overall Function Check instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified check is an effective alternative. The NG result of the Overall Function Check is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-81 , "Basic Inspection".) Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-86 , "Symptom Matrix Chart".)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) Harness Layouts. Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-98, "ECM Terminals and Reference Value", EC-123, "CONSULT-II Reference Value in Data Monitor Mode". The Diagnostic Procedure in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to Circuit Inspection in GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident". Repair or replace the malfunction parts. If malfunctioning part cannot be detected, perform EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the DTC Confirmation Procedure and confirm the normal code [DTC No. P0000] is detected. If the incident is still detected in the final check, perform STEP VI by using a method different from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-62, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" and AT-40, "HOW TO ERASE DTC".)

DIAGNOSTIC WORKSHEET

Description

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make troubleshooting faster and more accurate.

In general, each customer feels differently about an incident. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere.

KEY POINTS

WHAT Vehicle & engine model
WHEN Date, Frequencies
WHERE..... Road conditions
HOW Operating conditions,
Weather conditions.

Symptoms

SEF907L

Worksheet Sample

Customer nar	ne MR/MS	Model & Year	VIN				
Engine #		Trans.	Mileage				
Incident Date		Manuf. Date	In Service Date				
Fuel and fuel	filler cap	☐ Vehicle ran out of fuel causing misfire ☐ Fuel filler cap was left off or incorrectly screwed on.					
	☐ Startability	☐ Impossible to start ☐ No combus ☐ Partial combustion affected by th ☐ Partial combustion NOT affected ☐ Possible but hard to start ☐ Other	nrottle position d by throttle position				
Symptoms	□ Idling	☐ No fast idle ☐ Unstable ☐ H☐ Others [High idle ☐ Low idle				
-,	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backfi☐ Others ['				
	☐ Engine stall	☐ At the time of start ☐ While idling ☐ While accelerating ☐ While dece	elerating				
Incident occur	rrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night [☐ In the daytime				
Frequency		☐ All the time ☐ Under certain cond	ditions				
Weather cond	litions	☐ Not affected					
	Weather	☐ Fine ☐ Raining ☐ Snowing	☐ Others []				
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐	Cold ☐ Humid °F				
		☐ Cold ☐ During warm-up ☐	After warm-up				
Engine condit	ions	Engine speed0 2,000	4,000 6,000 8,000 rpm				
Road conditio	ons	☐ In town ☐ In suburbs ☐ Hig	jhway ☐ Off road (up/down)				
Driving condit	ions	☐ While accelerating ☐ While cruis ☐ While decelerating ☐ While turni	-				
Malfunation in	adicator lama	Vehicle speed	30 40 50 60 MPH				
Malfunction in	idicator lamp	□ rumed on □ Not turned on					

MTBL0017

Revision: 2004 October **EC-77** 2004 M45

Α

EC

D

С

Е

F

G

Н

Κ

L

DTC Inspection Priority Chart

ABS002DN

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

NOTE:

If DTC U1000 and/or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-143, "DTC U1000, U1001 CAN COMMUNICATION LINE".

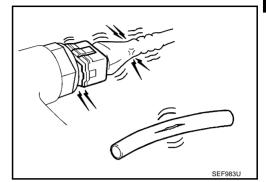
Priority	Detected items (DTC)
1	U1000 U1001 CAN communication line
	• P0101 P0102 P0103 P1102 Mass air flow sensor
	P0112 P0113 P0127 Intake air temperature sensor
	P0117 P0118 P0125 Engine coolant temperature sensor
	 P0122 P0123 P0222 P0223 P1225 P1226 P2135 Throttle position sensor
	P0128 Thermostat function
	P0181 P0182 P0183 Fuel tank temperature sensor
	• P0327 P0328 P0332 P0333 Knock sensor
	P0335 Crankshaft position sensor (POS)
	P0340 Camshaft position sensor (PHASE)
	• P0460 P0461 P0462 P0463 P1464 Fuel level sensor
	P0500 Vehicle speed sensor
	● P0605 ECM
	P0705 Park/Neutral position (PNP) switch
	P1229 Sensor power supply
	• P1610 - P1615 NATS
	P1706 Park/Neutral position (PNP) switch
	P1716 Turbine revolution sensor
	P2122 P2123 P2127 P2128 P2138 Accelerator pedal position sensor

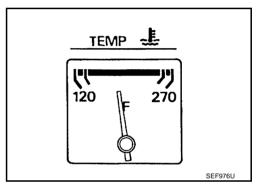
Priority	Detected items (DTC)	
2	P0031 P0032 P0051 P0052 Heated oxygen sensor 1 heater	_
	• P0037 P0038 P0057 P0058 Heated oxygen sensor 2 heater	
	P0132 P0133 P0134 P0152 P0153 P0154 P1143 P1144 P1163 P1164 Heated oxygen sensor 1	
	• P0138 P0139 P0158 P0159 P1146 P1147 P1166 P1167 Heated oxygen sensor 2	
	P0441 EVAP control system purge flow monitoring	
	P0444 P0445 P1444 EVAP canister purge volume control solenoid valve	
	P0447 P1446 P1448 EVAP canister vent control valve	
	P0452 P0453 EVAP control system pressure sensor	
	P0550 Power steering pressure sensor	
	● P0650 MIL	
	• P0710 P0720 P0740 P0744 P0745 P1720 P1730 P1752 P1754 P1757 P1759 P1762 P1764 P1767 P1769 P1772 P1774 A/T related sensors, solenoid valves and switches	
	P1065 ECM power supply	
	P1111 P1136 Intake valve timing control solenoid valve	
	P1119 Radiator coolant temperature sensor	
	P1122 Electric throttle control function	
	P1124 P1126 P1128 Electric throttle control actuator	
	P1140 P1145 Intake valve timing control position sensor	
	P1220 Fuel pump control module	
	P1217 Engine over temperature (OVERHEAT)	
	P1480 Cooling fan speed control solenoid valve	
	P1490 P1491 Vacuum cut valve bypass valve	
	P1805 Brake switch	
3	P0011 P0021 Intake valve timing control	
	P0171 P0172 P0174 P0175 Fuel injection system function	
	• P0300 - P0308 Misfire	
	P0420 P0430 Three way catalyst function	
	P0442 P1442 EVAP control system (SMALL LEAK)	
	P0455 EVAP control system (GROSS LEAK)	
	P0456 P1456 EVAP control system (VERY SMALL LEAK)	
	P0506 P0507 Idle speed control system	
	P1121 Electric throttle control actuator	
	P1148 P1168 Closed loop control	
	P1211 TCS control unit	
	P1212 TCS communication line	
	P1780 Shift change signal	

Fail-Safe Chart

When the DTC listed below is detected, the ECM enters fail-safe mode and the MIL lights up.

DTC No.	Detected items	Engine opera	ating condition in fail-safe mode							
P0102 P0103 P1102	Mass air flow sensor circuit	Engine speed will not rise more tha	n 2,400 rpm due to the fuel cut.							
P0117 P0118	Engine coolant tempera- ture sensor circuit	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch ON or START. CONSULT-II displays the engine coolant temperature decided by ECM.								
		Condition	Engine coolant temperature decided (CONSULT-II display)							
		Just as ignition switch is turned ON or START	40°C (104°F)							
		More than approx. 4 minutes after ignition ON or START	80°C (176°F)							
		Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)							
		When the fail-safe system for engine fan operates while engine is running	e coolant temperature sensor is activated, the cooling.							
P0122 P0123 P0222 P0223 P2135	Throttle position sensor	order for the idle position to be within +10 degrees. The ECM regulates the opening speed of the throttle valve to be slower th condition. So, the acceleration will be poor.								
P1121	Electric throttle control actuator	malfunction:)	tor does not function properly due to the return sprintle actuator by regulating the throttle opening arounwill not rise more than 2,000 rpm.							
		(When throttle valve opening angle in fail-safe mode is not in specified range:) ECM controls the electric throttle control actuator by regulating the throttle opening to 2 degrees or less.								
		the engine stalls.	ve is stuck open:) down gradually by fuel cut. After the vehicle stops, sition, and engine speed will not exceed 1,000 rpm							
P1122	Electric throttle control function	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	rol actuator control, throttle valve is maintained at a by the return spring.							
P1124 P1126	Throttle control motor relay	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	rol actuator control, throttle valve is maintained at a by the return spring.							
P1128	Throttle control motor	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.								
P1229	Sensor power supply	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	rol actuator control, throttle valve is maintained at a by the return spring.							
P2122 P2123 P2127 P2128 P2138	Accelerator pedal position sensor	on The ECM controls the electric throttle control actuator in regulating the throttle opening order for the idle position to be within +10 degrees. The ECM regulates the opening speed of the throttle valve to be slower than the norm condition. So, the acceleration will be poor.								

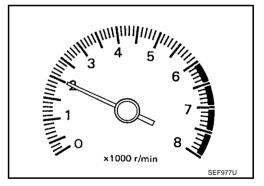

Basic Inspection


RSOOSDO

1. INSPECTION START

1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.

- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- 3. Confirm that electrical or mechanical loads are not applied.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- 4. Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.



- 5. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. REPAIR OR REPLACE

Repair or replace components as necessary according to corresponding Diagnostic Procedure.

>> GO TO 3

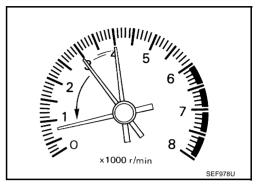
Α

Е

G

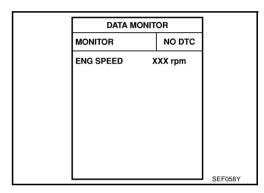
Н

J


Κ

L

$\overline{3}$. Check target idle speed


(II) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.

3. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

 650 ± 50 rpm (in P or N position)

W Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed.

 650 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-44, "Throttle Valve Closed Position Learning".

>> GO TO 6.

6. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-44, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 7.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

7. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

 650 ± 50 rpm (in P or N position)

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Check idle speed.

 650 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 8.

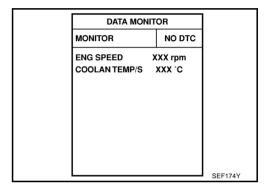
8. DETECT MALFUNCTIONING PART

Check the Following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-317.
- Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-309</u>.

OK or NG

OK >> GO TO 9.


NG >> 1. Repair or replace.

2. GO TO 4.

9. CHECK ECM FUNCTION

- Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-174, "ECM Re-Communicating Function".

>> GO TO 4.

EC

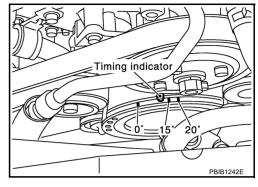
L

Е

ш

K

10. CHECK IGNITION TIMING


- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

 $12 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> INSPECTION END

NG >> GO TO 11.

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-44. "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-44, "Throttle Valve Closed Position Learning".

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-44, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 14.

No >> 1. Follow the instruction of Idle Air Volume Learning.

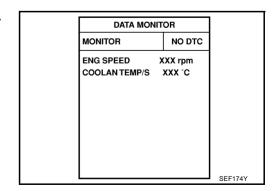
2. GO TO 4.

14. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Read idle speed in "DATA MONITOR" mode with CONSULT-II.

 650 ± 50 rpm (in P or N position)


Without CONSULT-II

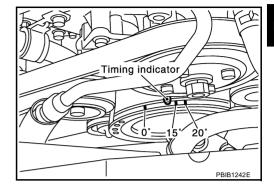
- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed.

 650 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 15. NG >> GO TO 17.

15. CHECK IGNITION TIMING AGAIN


- 1. Run engine at idle.
- 2. Check ignition timing with a timing light.

 $12 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> INSPECTION END

NG >> GO TO 16.

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to EM-38, "TIMING CHAIN".

OK or NG

OK >> GO TO 17.

NG >> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to EC-317.
- Check crankshaft position sensor (POS) and circuit. Refer to EC-309.

OK or NG

OK >> GO TO 18.

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- 2. Perform initialization of all IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to <u>BL-174</u>, "<u>ECM Re-Communicating Function</u>".

>> GO TO 4.

EC

С

D

Ы

G

K

Symptom Matrix Chart SYSTEM — BASIC ENGINE CONTROL SYSTEM

ABS002DP

							S`	YMPT	ОМ						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Fuel	y symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	HA	EC-519,
i dei	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-674
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-46
	Injector circuit	1	1	2	3	2		2	2			2			EC-661
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-692
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-704
	Incorrect idle speed adjustment						1	1	1	1		1			EC-81
	Electric throttle control actuator	1	1	2	3	3	2	2	2	2		2		2	EC-440, EC-442
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-81
	Ignition signal circuit	1	1	2	2	2		2	2			2			EC-649
Main po	wer supply and ground circuit	2	2	3	3	3		3	3		2	3			EC-133
Mass ai	r flow sensor circuit	1			2										EC-174, EC-182, EC-422
Engine	coolant temperature sensor circuit						3			3					EC-193, EC-205
Heated	oxygen sensor 1 circuit		1	2	3	2		2	2			2			EC-214, EC-224, EC-236, EC-468, EC-474
Throttle	position sensor circuit						2			2					EC-199, EC-292, EC-527, EC-529, EC-627
Accelera	ator pedal position sensor circuit			3	2	1									EC-615, EC-621, EC-634
Knock s	ensor circuit			2								3			EC-304
Cranksh	naft position sensor (POS) circuit	2	2												EC-309
	aft position sensor (PHASE) circuit	3	2												EC-317
Vehicle	speed signal circuit	L	2	3		3	L	L				3	L		EC-399

		SYMPTOM												
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Power steering pressure sensor circuit		2					3	3						EC-405
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-410, EC-418
Intake valve timing control solenoid valve circuit	3	3	2		1	3	2	2	3		3			EC-428
Park/neutral position (PNP) switch circuit			3		3		3	3			3			EC-600
Start signal circuit	2													EC-670
Refrigerant pressure sensor circuit		2				3			3		4			EC-680
Electrical load signal circuit							3	3						EC-685
Air conditioner circuit	2	2	3	3	3	3	3	3	3		3		2	ATC-34
Radiator coolant temperature sensor circuit														EC-434
Cooling fan speed control solenoid valve circuit														EC-578
VIAS control solenoid valve circuit					1									EC-641
VDC/TCS/ABS control unit			4											EC-507, EC-508

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

M

Κ

Α

EC

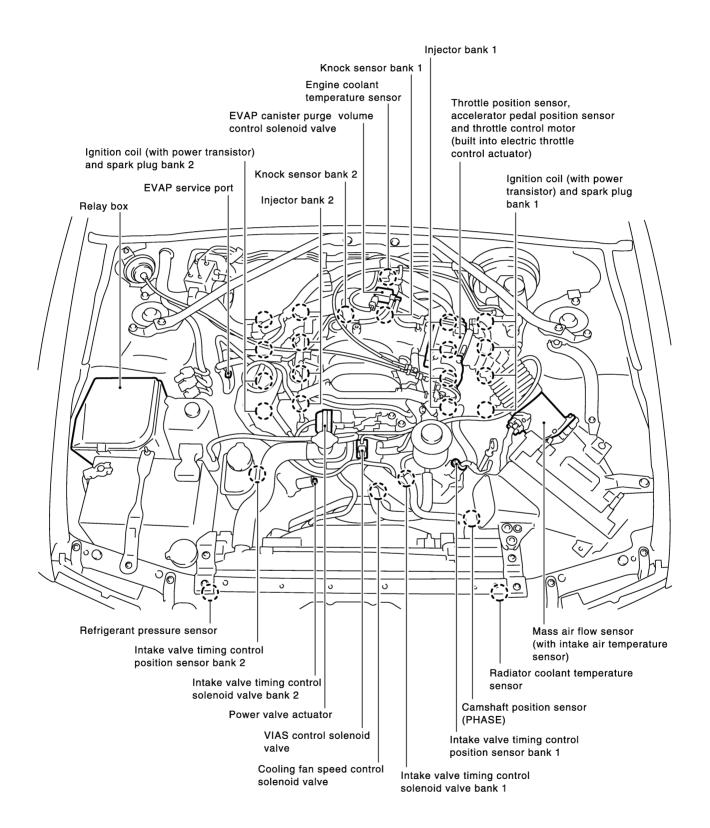
С

D

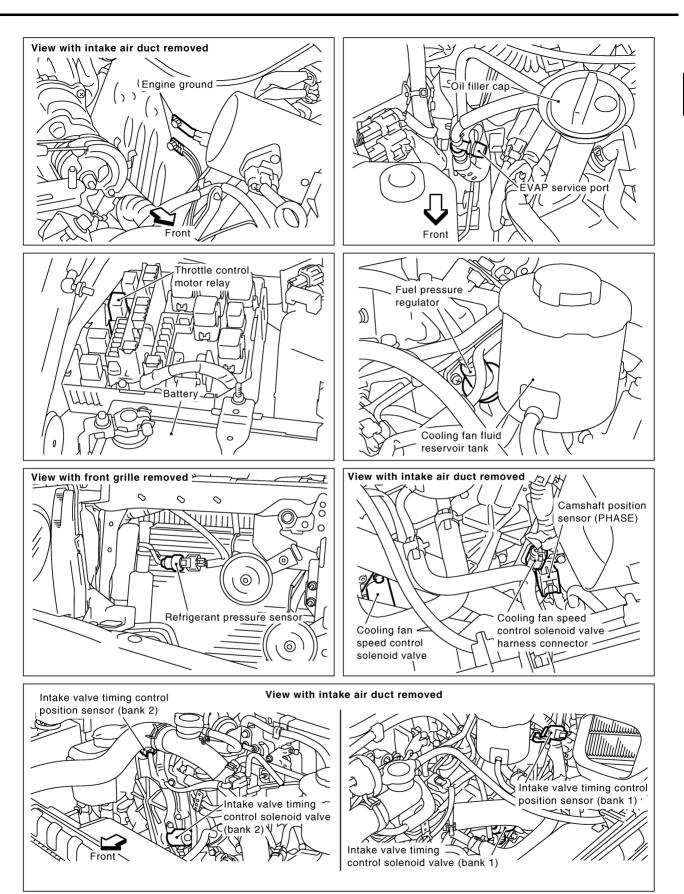
Е

F

G


Н

SYSTEM — ENGINE MECHANICAL & OTHER


		SYMPTOM													
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	DLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty s	ymptom code	AA	— AB	AC	AD	AE	AF	AG	= AH	AJ	AK	АL	АМ	НА	
Fuel	Fuel tank														<u>FL-9</u>
	Fuel piping	5		5	5	5		5	5			5			FL-2, EM- 31
	Vapor lock		5												_
	Valve deposit														_
	Poor fuel (Heavy weight gaso- line, Low octane)	5		5	5	5		5	5			5			_
Air	Air duct														EM-16
	Air cleaner														EM-16
	Air leakage from air duct (Mass air flow sensor — electric throttle control actuator)		5	5		5		5	5			5			<u>EM-16</u>
	Electric throttle control actuator, Throttle wire	5			5		5			5					<u>EM-18,</u> <u>ACC-2</u>
	Air leakage from intake manifold/ Collector/Gasket														<u>EM-18</u>
Cranking	Battery	1	1	1		1		1	1			1		1	<u>SC-4</u>
	Generator circuit			'											<u>SC-17</u>
	Starter circuit	3													<u>SC-9</u>
	Drive plate	6													<u>EM-80</u>
	Park/neutral position (PNP) switch	4													<u>AT-110</u>
Engine	Cylinder head	5	5	5	5	5		5	5			5			<u>EM-65</u>
	Cylinder head gasket			J					,		4		3		
	Cylinder block														
	Piston												4		
	Piston ring	6	6	6	6	6		6	6			6			<u>EM-80</u>
	Connecting rod		3		3				5						<u> </u>
	Bearing Crankshaft														

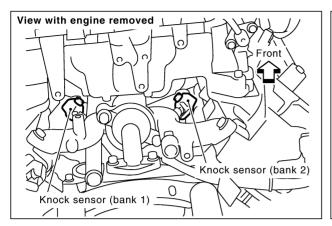
							S١	/MPT	OM							А
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	EC C
Warranty s	symptom code	AA	АВ	AC	AD	AE	AF	AG	= AH	AJ	AK	АL	АМ	НА		
Valve	Timing chain														EM-38	F
mecha- nism	Camshaft	5	5	5	5	5		5	5			5			EM-49	
ПІЗПІ	Intake valve timing control														EM-38	G
	Intake valve	_	_	_	_	_		_	_			-	_		EN 05	0
	Exhaust valve	5	5	5	5	5		5	5			5	3		<u>EM-65</u>	
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	5	5	5	5	5	5	5		5					EM-22, EX- 3	Н
	Three way catalyst															
Lubrica- tion	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery/Oil cooler	5	5	5	5	5		5	5			5			EM-25, LU- 9, LU-10	I
	Oil level (Low)/Filthy oil														<u>LU-6</u>	J
Cooling	Radiator/Hose/Radiator filler cap														<u>CO-12</u>	J
	Thermostat									5					<u>CO-24</u>	
	Water pump														<u>CO-22</u>	K
	Water gallery	5	5	5	5	5		5	5		4	5			<u>CO-7</u>	
	Cooling fan									5					<u>CO-19</u>	
	Coolant level (Low)/Contami- nated coolant														<u>CO-9</u>	L
IVIS (INFII NATS)	NITI Vehicle Immobilizer System —	1	1												EC-64, BL-172	M

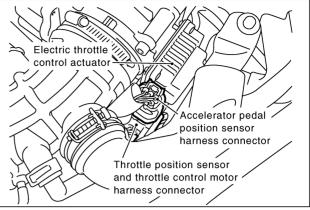
^{1 - 6:} The numbers refer to the order of inspection.

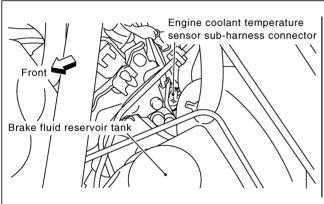
PBIB1111E

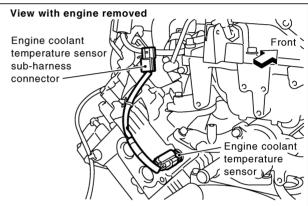
PBIB1130E

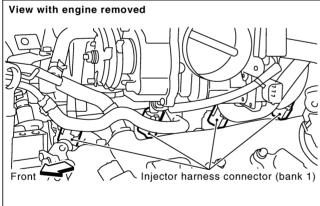
Α

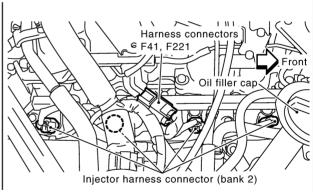

EC

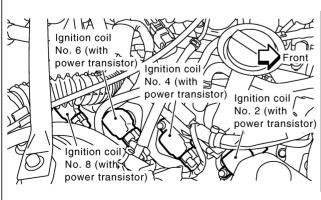

D

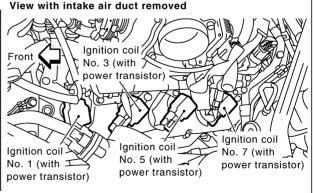

Е

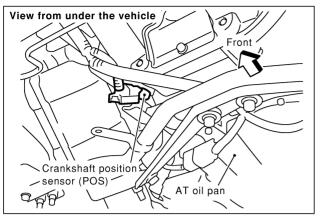

G

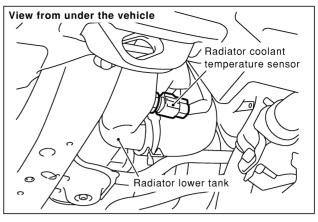

Н

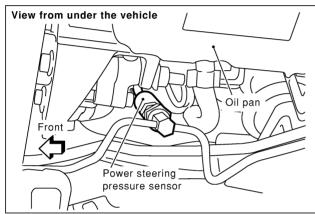


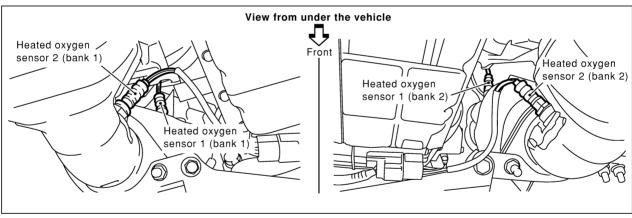


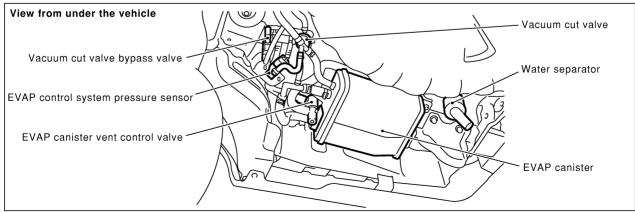











PBIB1131E

PBIB0004E

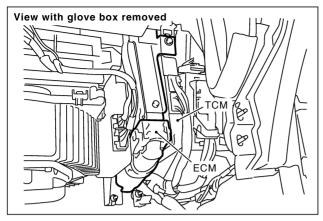
EC

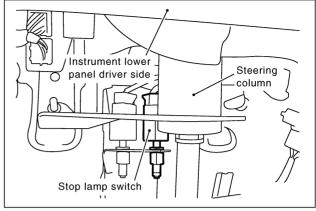
Α

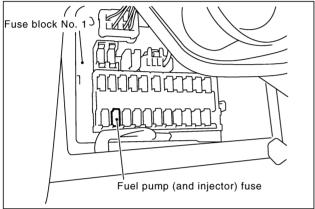
D

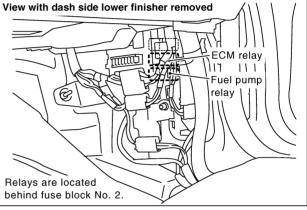
Е

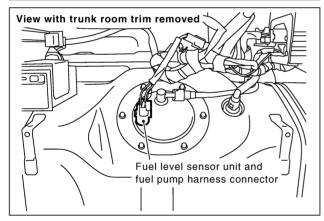
F

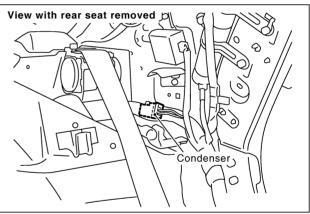

G

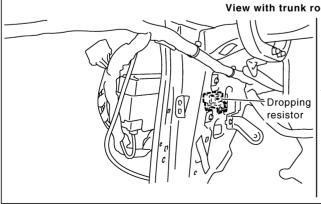

Н

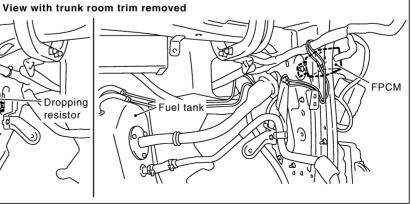

J

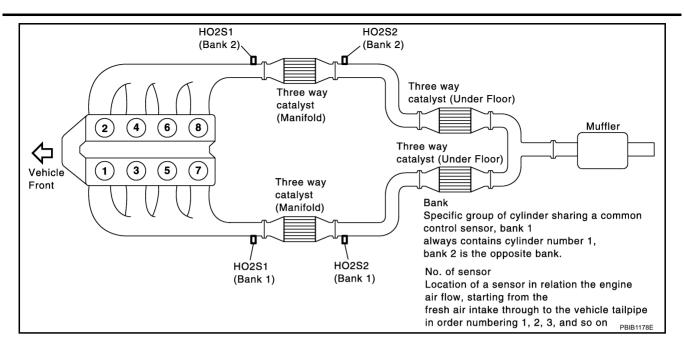

<

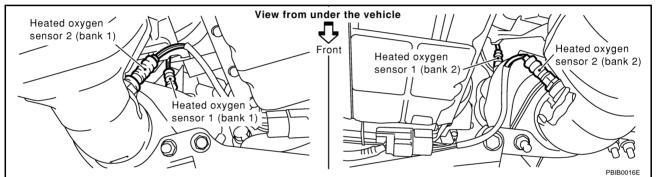

L











PBIB1132E

Α

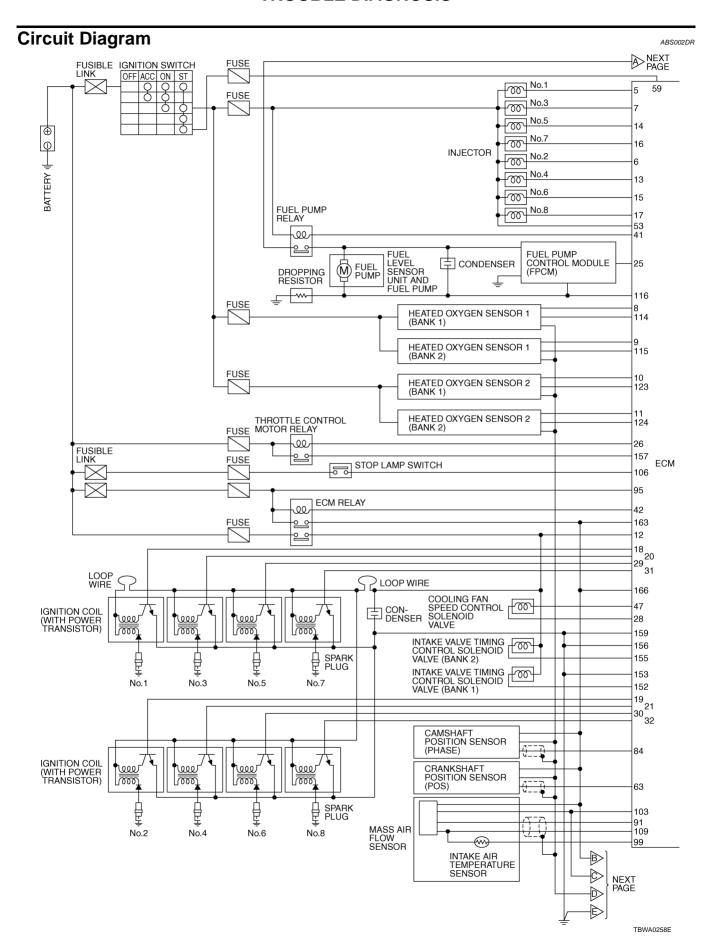
EC

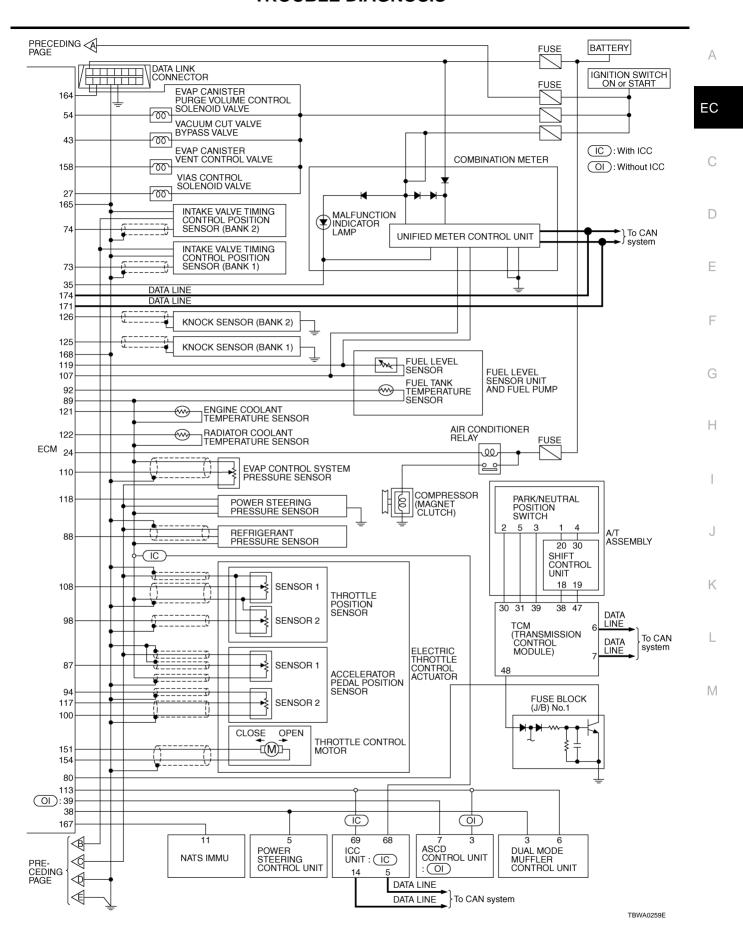
С

D

Е

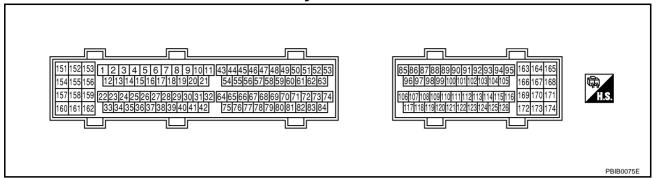
F


G

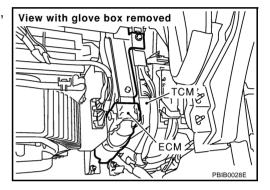

Н

J

<


.

ECM Harness Connector Terminal Layout


ABS002D


ECM Terminals and Reference Value PREPARATION

ABS002DT

- 1. ECM is located behind the glove box. For this inspection, remove glove box.
- 2. Remove ECM harness protector.

- 3. Perform all voltage measurements with the connector connected. Extend tester probe as shown to perform tests easily.
 - Open harness securing clip to make testing easier.
 - Use extreme care not to touch 2 pins at one time.
 - Data is for comparison and may not be exact.

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CALITION

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
5 6 7	B/W L BR P	Injector No. 1 Injector No. 2 Injector No. 3 Injector No. 4	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	BATTERY VOLTAGE (11 - 14V)★ 10.0V/Div 50 ms/Div PBIB0042E
14 15 16 17	OR/L B/R OR G	Injector No. 5 Injector No. 6 Injector No. 7 Injector No. 8	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ 10.0V/Div 50 ms/Div
8	BR	Heated oxygen sensor 1 heater (bank 1)	[Engine is running] • Warm-up condition • Engine speed: Below 3,000 rpm. [Engine is running]	Approximately 7V Approximately 7V PBIB0043E PBIB0043E PBIB0043E
9	G/Y	Heated oxygen sensor 1 heater (bank 2)	 Engine speed: Above 3,000 rpm. [Engine is running] Warm-up condition Engine speed: Below 3,000 rpm. [Engine is running] 	Approximately 7V★
10	GY	Heated oxygen sensor 2 heater (bank 1)	 Engine speed: Above 3,000 rpm. [Engine is running] Engine speed is below 3,600 rpm after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load [Ignition switch: ON] Engine stopped [Engine is running] Engine speed: Above 3,600 rpm. 	(11 - 14V) 0 - 1.0V BATTERY VOLTAGE (11 - 14V)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
11	G	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed is below 3,600 rpm after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load [Ignition switch: ON] Engine stopped 	0 - 1.0V BATTERY VOLTAGE
			[Engine is running] • Engine speed: Above 3,600 rpm.	(11 - 14V)
12	W/L	Counter current return	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
18 19 20 21	Y/R W/G GY W/R	Ignition signal No. 1 Ignition signal No. 2 Ignition signal No. 3 Ignition signal No. 4	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	0 - 0.1V★
29 30 31 32	29 GY/R Ignition signal No. 5 30 PU/W Ignition signal No. 6 31 L/R Ignition signal No. 7		[Engine is running]Warm-up conditionEngine speed: 2,000 rpm.	0 - 0.2V★
24	G/W	Air conditioner relay	 [Engine is running] ● Both A/C switch and blower switch: ON (Compressor operates). 	0 - 1.0V
			[Engine is running] • A/C switch: OFF.	BATTERY VOLTAGE (11 - 14V)
25	B/R	Fuel pump control module	[When cranking engine] [Engine is running] • Warm-up condition • Idle speed	0 - 0.5V 8 - 12V
26	OR	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON] [Engine is running]	0 - 1.0V 0 - 1.0V
27	PU	VIAS control solenoid valve	Selector lever: P or N [Engine is running] Selector lever: D [Engine is running]	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] • Engine speed: Above 5,000 rpm	0 - 1.0V
28	L	Cooling fan speed control solenoid valve ground	[Engine is running]	Approximately 0V

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch: ON]	0 - 1.0V
35	Y/G	MIL	[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
20	WO		[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	3 - 6V★ ≥ 5.0V/Div 10 ms/Div PBIB0046E
38	W/G	Tachometer signal	[Engine is running] ● Engine speed: 2,500 rpm.	3 - 6V★ 20 5.0V/Div 10 ms/Div PBIB0047E
39	OR	ASCD communication line	[Engine is running] ● Idle speed	3 - 6V★ ≥≥ 0.1V/Div 10 ms/Div PBIB0048E
41	GY	Fuel pump relay	[Ignition switch: ON] • For a few seconds after turning ignition switch ON [Engine is running]	0 - 1.0V
			[Ignition switch: ON]More than a few seconds after turning ignition switch ON.	BATTERY VOLTAGE (11 - 14V)
42	W/B	ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]A few seconds after turning ignition switch OFF	0 - 1.0V
		(255)	[Ignition switch: OFF]More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
43	G/Y	Vacuum cut valve bypass valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
47	R	Cooling fan speed control solenoid valve	[Engine is running] ● Idle speed	6.5 - 8V★ >>> 10.0V/Div 2 ms/Div PBIB0049E

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Volta	ige)
			[Ignition switch: OFF]	0V	
53	W/G	Ignition switch	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	
				BATTERY VOLTAGE	
				(11 - 14V) ★	
		EVAP canister purge vol-	[Engine is running] ● Idle speed	>> 10.0V/Div 50 ms/Div	≥ 10.0V/Div 50 ms/Div PBIB0050E
54	L/Y	ume control solenoid valve		BATTERY VOLTAGE	
				(11 - 14V)★	
	• En	 [Engine is running] Engine speed is about 2,000 rpm (More than 100 seconds after starting engine). 	> 10.0V/Div 50 ms/Div		
				F-10.00/6/0 30 11.05/1	PBIB0051E
59	SB	Chart signal	[Ignition switch: ON]	Approximately 0V	
39	SD	Start signal	[Ignition switch: START]	9 - 12V	
63		Crankshaft position sensor (POS)	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle. 	1.0 - 2.0V★	PBIB0052E
				1.0 - 2.0V★	
			[Engine is running] ● Engine speed: 2,000 rpm.	≫ 5.0V/Div 1 ms/Div	PBIB0053E

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
73 Y	V	Intake valve timing control position sensor (bank 1)	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	0 - 1.0V★ >> 5.0V/Div 20 ms/Div PBIB0054E	C
	'		[Engine is running] ● Engine speed: 2,000 rpm.	0 - 1.0V★ ≥≥ 5.0V/Div 20 ms/Div PBIB0055E	E F
74	W	Intake valve timing control	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	0 - 1.0V★	G H
74	W	position sensor (bank 2)	[Engine is running] ● Engine speed: 2,000 rpm.	0 - 1.0V★ >>> 5.0V/Div 20 ms/Div PBIB0055E	J K
80	GY/R	PNP switch	[Ignition switch: ON] • Selector lever: P or N. [Ignition switch: ON] • Except above	Approximately 0V Approximately 5V	. L
04		Camshaft position sensor	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle.	1.0 - 4.0 V★ 1.0 - 4.0 V★ 20 ms/Div PBIB0056E	M
84	L/W	(PHASE)	[Engine is running] ● Engine speed: 2,000 rpm.	1.0 - 4.0 V★	-

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
87	L/W	Accelerator pedal position	[Ignition switch: ON]● Engine stopped● Accelerator pedal: Fully released	More than 0.36V	
67	L/VV	sensor 1	[Ignition switch: ON]Engine stoppedAccelerator pedal: Fully depressed	Less than 4.75V	
88	Р	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch: ON. (Compressor operates.) 	1.0 - 4.0V	
89	В	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	
91	B/Y	Mass air flow sensor	[Engine is running] ■ Warm-up condition ■ Idle speed	1.1 - 1.5V	
91	<i>D</i> / ī		[Engine is running]Warm-up conditionEngine speed: 2,500 rpm.	1.7 - 2.4V	
92	PU/W	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel tank temperature.	
94	G	Sensor power supply (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 2.5V	
95	W	Power supply for ECM (Back-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)	
00	NA /	Throttle position sensor 2	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully released 	Less than 4.75V	
98	W		 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	More than 0.36V	
99	L	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.	
100	BR	Sensor ground (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 0V	
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V	
106	R/W		[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V	
100	I X/ V V	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)	
107	В	Fuel level sensor ground	[Engine is running] ● Idle speed	Approximately 0V	

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
108 B/W		 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully released 	More than 0.36V	
	B/W	Throttle position sensor 1	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully depressed	Less than 4.75V
109	LG	Mass air flow sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
110	G	EVAP control system pres- sure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
113	R/Y	Accelerator pedal position	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully released	0.4 - 0.8V
113 171		sensor signal output	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	4.0 - 5.0V
114	R/L	Heated oxygen sensor 1 (bank 1)	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm.	0 - Approximately 1.0V (Periodically change)
115	L	Heated oxygen sensor 1 (bank 2)	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm.	0 - Approximately 1.0V (Periodically change)
			[Ignition switch: ON] • More than a few seconds after turning ignition switch ON	Approximately 0V
116 G/R	G/R	Fuel pump control module check	 [Ignition switch: ON] For a few seconds after turning ignition switch ON [Engine is running] Warm-up condition Idle speed 	4 - 6V
117	B/R A	Accelerator pedal position	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully released 	More than 0.18V
		sensor 2	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	Less than 2.37V

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
118 F	В	Power steering pressure sensor	[Engine is running] • Steering wheel: Being turned.	0.5 - 4.0V
	K		[Engine is running]Steering wheel: Not being turned.	0.4 - 0.8V
119	R/L	Fuel level sensor	[Ignition switch: ON]	Approximately 0 - 4.8V Output voltage varies with fuel level.
121	Y/B	Engine coolant temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.
122	G/R	Radiator coolant tempera- ture sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with radiator coolant temperature.
123	PU	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
124	В	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
125 126	W W	Knock sensor (bank 1) Knock sensor (bank 2)	[Engine is running] • Idle speed	Approximately 2.5V
151	L/B	Throttle control motor (Open)	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	0 - 14V★ → 10.0V/Div 200 us/Div PBIB0058E
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)
152	Р	Intake valve timing control solenoid valve (bank 1)	[Engine is running] • Warm-up condition • Engine speed: 2,500 rpm	7 - 12V★
153	В	Throttle control motor ground	[Ignition switch: ON]	Approximately 0V

					=
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	_
154	L/W	Throttle control motor (Close)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully released	0 - 14V★ → 10.0V/Div 200 us/Div PBIB0061E	E
			[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)	- [- [
155 W/B	W/B	Intake valve timing control solenoid valve (bank 2)	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	7 - 12V*	F
156 159 165 168	B B B/W B/W	ECM ground	[Engine is running] • Idle speed	Engine ground	- -
157	L	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	=
158	L/Y	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	-
163 166	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	
164	PU	Data link connector	[Ignition switch: ON] • CONSULT-II or GST: Disconnected.	BATTERY VOLTAGE (11 - 14V)	ŀ
171	P/B	CAN communication line	[Ignition switch: ON]	Approximately 1.7 - 2.3V Output voltage varies with the communication status.	- L
174	LG/B	CAN communication line	[Ignition switch: ON]	Approximately 2.6 - 3.2V Output voltage varies with the communication status.	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

CONSULT-II Function (ENGINE) FUNCTION

ABS002DU

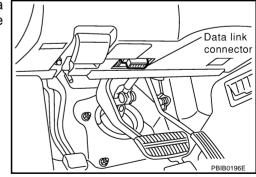
Diagnostic test mode	Function		
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.		
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*		
Data monitor	Input/Output data in the ECM can be read.		
Data monitor (SPEC)	Input/Output of the specification for Basic fuel schedule, AFM, A/F feedback control value and the other data monitor items can be read.		
CAN diagnostic support monitor	The results of transmit/receive diagnosis of CAN communication can be read.		
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.		
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.		
Function test	This mode is used to inform customers when their vehicle condition requires periodic maintenance.		
ECM part number	ECM part number can be read.		

^{*:} The following emission-related diagnostic information is cleared when the ECM memory is erased.

- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
- Others

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

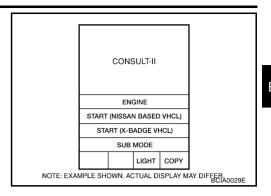
					DIAC	SNOSTIC	TEST MO	DE			- A
			WORK		AGNOSTIC SULTS	DATA	DATA		DTC 8		
		Item	WORK SUP- PORT	DTC*1	FREEZE FRAME DATA*2	DATA MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT	E(
		Crankshaft position sensor (POS)		×	×	×	×				_
		Camshaft position sensor (PHASE)		×	×	×	×				
		Mass air flow sensor		×		×	×				L
		Engine coolant temperature sensor		×	×	×	×	×			_
		Heated oxygen sensor 1		×		×	×		×	×	Е
		Heated oxygen sensor 2		×		×	×		×	×	_
		Vehicle speed sensor		×	×	×	×				_
		Accelerator pedal position sensor		×		×	×				F
		Throttle position sensor		×		×	×				_
RTS		Fuel tank temperature sensor		×		×	×	×			
NT PA		EVAP control system pressure sensor		×		×	×				
JNE		Intake air temperature sensor		×	×	×	×				- -
MP	_	Knock sensor		×							_
OL CO	INPUT	Radiator coolant temperature sensor		×		×	×				-
Z TR		Refrigerant pressure sensor				×	×				_
S		Ignition switch (start signal)				×	×				-
ENGINE CONTROL COMPONENT PARTS		Closed throttle position switch (accelerator pedal position sensor signal)				×	×				- J
		Air conditioner switch				×	×				K
		Park/neutral position (PNP) switch		×		×	×				-
		Stop lamp switch		×		×	×				-
		Power steering pressure sensor		×		×	×				- L
		Battery voltage				×	×				-
		Load signal				×	×				
		Intake valve timing control position sensor		×		×	×				_
		Fuel level sensor		×		×	×				-


EC-109 Revision: 2004 October 2004 M45

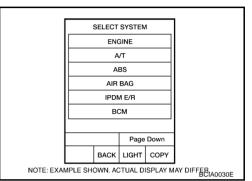
				DIAC	SNOSTIC	TEST MO	DE		
		WORK	-	AGNOSTIC SULTS	DATA	DATA		DTC & SRT CONFIRMATION	
	Item	WORK — SUP- PORT	DTC*1	FREEZE FRAME DATA*2	MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
	Fuel injector				×	×	×		
	Power transistor (Ignition timing)				×	×	×		
	Throttle control motor relay		×		×	×			
20	Throttle control motor		×						
A A K	EVAP canister purge volume control solenoid valve		×		×	×	×		×
z	FPCM		×		×	×	×		
	Air conditioner relay				×	×			
<u> </u>	Fuel pump relay	×			×	×	×		
ENGINE CONTROL COMPONENT PARTS OUTPUT	Cooling fan speed control solenoid valve		×		×	×	×		
Ž	Heated oxygen sensor 1 heater		×		×	×		×	
3	Heated oxygen sensor 2 heater		×		×	×		×	
	EVAP canister vent control valve	×	×		×	×	×		
EN	Vacuum cut valve bypass valve	×	×		×	×	×		×
	Intake valve timing control solenoid valve		×		×	×	×		
	VIAS control solenoid valve				×	×	×		
	Calculated load value			×	×	×			

X: Applicable

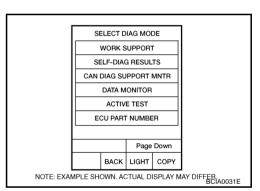
INSPECTION PROCEDURE


- 1. Turn ignition switch OFF.
- 2. Connect CONSULT-II and CONSULT-II CONVERTER to data link connector, which is located under LH dash panel near the fuse box cover.
- 3. Turn ignition switch ON.

^{*1:} This item includes 1st trip DTCs.


^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-54.

4. Touch "START(NISSAN BASED VHCL)".


5. Touch "ENGINE".

If "ENGINE" is not indicated, go to GI-38, "CONSULT-II Data Link Connector (DLC) Circuit".

6. Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

WORK SUPPORT MODE

Work Item

WORK ITEM	CONDITION	USAGE
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DUR- ING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
IDLE AIR VOL LEARN	THE IDLE AIR VOLUME THAT KEEPS THE ENGINE WITHIN THE SPECIFIED RANGE IS MEMORIZED IN ECM.	When learning the idle air volume
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEF- FICIENT.	When clearing the coefficient of self-learning control value

Revision: 2004 October **EC-111** 2004 M45

EC

Α

D

=

F

G

Н

11

J

WORK ITEM	CONDITION	USAGE
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS.	When detecting EVAP vapor leak point of EVAP system
	• IGN SW ON	
	ENGINE NOT RUNNING	
	• AMBIENT TEMPERATURE IS ABOVE 0°C (32°F).	
	NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM	
	● TANK FUEL TEMP. IS MORE THAN 0°C (32°F).	
	WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE"	
	WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT- II WILL DISCONTINUE IT AND DISPLAY APPROPRI- ATE INSTRUCTION.	
	NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed
TARGET IGNITION TIMING ADJ*	IDLE CONDITION	When adjusting target ignition timing

^{*:} This function is not necessary in the usual service procedure.

SELF-DIAG RESULTS MODE

Self Diagnostic Item

Regarding items of DTC and 1st trip DTC, refer to <a>EC-9, "INDEX FOR DTC".)

Freeze Frame Data and 1st Trip Freeze Frame Data

	•
Freeze frame data item*	Description
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as "PXXXX". (Refer to EC-9, "INDEX FOR DTC".)
FUEL SYS-B1	"Fuel injection system status" at the moment a malfunction is detected is displayed.
FUEL SYS-B2	 One mode in the following is displayed. "Mode 2": Open loop due to detected system malfunction "Mode 3": Open loop due to driving conditions (power enrichment, deceleration enleanment) "Mode 4": Closed loop - using oxygen sensor(s) as feedback for fuel control "Mode 5": Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
S-FUEL TRM-B1 [%]	"Short-term fuel trim" at the moment a malfunction is detected is displayed.
S-FUEL TRM-B2 [%]	The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.
L-FUEL TRM-B1 [%]	"Long-term fuel trim" at the moment a malfunction is detected is displayed.
L-FUEL TRM-B2 [%]	The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VEHICL SPEED [km/ h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.

Freeze frame data item*	Description
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.

^{*:} The items are the same as those of 1st trip freeze frame data.

DATA MONITOR MODE

Monitored Item

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
ENG SPEED [rpm]	×	×	 Indicates the engine speed computed from the signals of the crankshaft posi- tion sensor (POS) and camshaft posi- tion sensor (PHASE). 	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated.
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
COOLAN TEMP/S [°C] or [°F]	×	×	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed.	 When the engine coolant tempera- ture sensor is open or short-cir- cuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is dis- played.
HO2S1 (B1) [V]	×	×	The signal voltage of the heated oxygen	
HO2S1 (B2) [V]	×		sensor 1 is displayed.	
HO2S2 (B1) [V]	×		The signal voltage of the heated oxygen	
HO2S2 (B2) [V]	×		sensor 2 is displayed.	
HO2S1 MNTR (B1) [RICH/LEAN]	×	×	Display of heated oxygen sensor 1 signal during air-fuel ratio feedback control: Display of heated oxygen sensor 1 signal during air-fuel ratio feedback control:	 After turning ON the ignition switch, "RICH" is displayed until air-fuel mixture ratio feedback
HO2S1 MNTR (B2) [RICH/LEAN]	×		RICH: Means the mixture became rich, and control is being affected toward a leaner mixture. LEAN: Means the mixture became lean, and control is being affected toward a rich mixture.	control begins. When the air-fuel ratio feedback is clamped, the value just before the clamping is displayed continuously.
HO2S2 MNTR (B1) [RICH/LEAN]	×		Display of heated oxygen sensor 2 signal:	
HO2S2 MNTR (B2) [RICH/LEAN]	×		RICH: Means the amount of oxygen after three way catalyst is relatively small. LEAN: Means the amount of oxygen after three way catalyst is relatively large.	 When the engine is stopped, a certain value is indicated.
VHCL SPEED SE [km/h] or [mph]	×	×	The vehicle speed computed from the vehicle speed signal is displayed.	
BATTERY VOLT [V]	×	×	The power supply voltage of ECM is displayed.	
ACCEL SEN 1 [V]	×	×	The accelerator pedal position sensor	ACCEL SEN 2 signal is converted by ECM interpolly. Thus, it differs
ACCEL SEN 2 [V]	×		signal voltage is displayed.	by ECM internally. Thus, it differs from ECM terminal voltage signal.

Revision: 2004 October **EC-113** 2004 M45

EC

Α

Е

D

G

F

Н

1

<

L

 \mathbb{N}

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
THRTL SEN 1 [V] THRTL SEN 2 [V]	×	×	The throttle position sensor signal voltage is displayed.	THRTL SEN 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.
FUEL T/TEMP SE [°C] or [°F]	×		The fuel temperature (determined by the signal voltage of the fuel tank temperature sensor) is displayed.	Tom Zom Committe Voltage orginal.
INT/A TEMP SE [°C] or [°F]	×	×	The intake air temperature (determined by the signal voltage of the intake air temperature sensor) is indicated.	
EVAP SYS PRES [V]	×		The signal voltage of EVAP control system pressure sensor is displayed.	
FUEL LEVEL SE [V]	×		The signal voltage of the fuel level sensor is displayed.	
START SIGNAL [ON/OFF]	×	×	Indicates [ON/OFF] condition from the starter signal.	 After starting the engine, [OFF] is displayed regardless of the starter signal.
CLSD THL POS [ON/OFF]	×	×	 Indicates idle position [ON/OFF] computed by ECM according to the accelerator pedal position sensor signal. 	
AIR COND SIG [ON/OFF]	×	×	 Indicates [ON/OFF] condition of the air conditioner switch determined by the air conditioner signal. 	
P/N POSI SW [ON/OFF]	×	×	 Indicates [ON/OFF] condition from the park/neutral position (PNP) switch sig- nal. 	
PW/ST SIGNAL [ON/OFF]	×	×	[ON/OFF] condition of the power steering system (determined by the signal voltage of the power steering pressure sensor signal) is indicated.	
LOAD SIGNAL [ON/OFF]	×	×	 Indicates [ON/OFF] condition from the electrical load signal. ON: Rear window defogger switch is ON and/or lighting switch is in 2nd position. OFF: Both rear window defogger switch and lighting switch are OFF. 	
IGNITION SW [ON/OFF]	×		Indicates [ON/OFF] condition from ignition switch.	
HEATER FAN SW [ON/OFF]	×		 Indicates [ON/OFF] condition from the heater fan switch signal. 	
BRAKE SW [ON/OFF]	×		Indicates [ON/OFF] condition from the stop lamp switch signal.	
INJ PULSE-B1 [msec] INJ PULSE-B2		×	 Indicates the actual fuel injection pulse width compensated by ECM according to the input signals. 	When the engine is stopped, a certain computed value is indicated.
[msec] B/FUEL SCHDL [msec]			"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
IGN TIMING [BTDC]		×	 Indicates the ignition timing computed by ECM according to the input signals. 	When the engine is stopped, a certain value is indicated.

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
A/F ALPHA-B1 [%] A/F ALPHA-B2 [%]		×	The mean value of the air-fuel ratio feedback correction factor per cycle is indicated.	 When the engine is stopped, a certain value is indicated. This data also includes the data for the air-fuel ratio learning control.
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.	troi.
MASS AIRFLOW [g·m/s]			Indicates the mass airflow computed by ECM according to the signal voltage of the mass air flow sensor.	
PURG VOL C/V [%]			 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the value increases. 	
INT/V TIM (B1) [°CA]			Indicates [°CA] of intake camshaft	
INT/V TIM (B2) [°CA]			advanced angle.	
INT/V SOL (B1) [%]			The control value of the intake valve tim-	
INT/V SOL (B2) [%]			 ing control solenoid valve (determined by ECM according to the input signal) is indicated. The advance angle becomes larger as the value increases. 	
VIAS S/V [ON/OFF]			 The control condition of the VIAS control solenoid valve (determined by ECM according to the input signals) is indicated. OFF: VIAS control solenoid valve is not operating. ON: VIAS control solenoid valve is operating. 	
AIR COND RLY [ON/OFF]		×	The air conditioner relay control condition (determined by ECM according to the input signals) is indicated.	
FUEL PUMP RLY [ON/OFF]		×	Indicates the fuel pump relay control condition determined by ECM according to the input signals.	
FPCM [HI/LOW]		×	The control condition of the fuel pump control module (FPCM) (determined by the ECM according to the input signals) is indicated.	
VC/V BYPASS/V [ON/OFF]			 The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signals) is indicated. ON: Open OFF: Closed 	

EC-115 Revision: 2004 October 2004 M45

EC

С

D

Е

F

G

Н

Κ

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
VENT CONT/V [ON/OFF]			 The control condition of the EVAP canister vent control valve (determined by ECM according to the input signals) is indicated. ON: Closed OFF: Open 	
THRTL RELAY [ON/OFF]		×	 Indicates the throttle control motor relay control condition determined by the ECM according to the input signals. 	
HO2S1 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of heated oxygen sensor 1 heater determined by	
HO2S1 HTR (B2) [ON/OFF]			ECM according to the input signals.	
HO2S2 HTR (B1) [ON/OFF]			 Indicates [ON/OFF] condition of heated oxygen sensor 2 heater determined by 	
HO2S2 HTR (B2) [ON/OFF]			ECM according to the input signals.	
IDL A/V LEARN [YET/CMPLT]			 Display the condition of idle air volume learning. YET: Idle Air Volume Learning has not been performed yet. CMPLT: Idle Air Volume Learning has already been performed successfully. 	
TRVL AFTER MIL [km] or [mile]			Distance traveled while MIL is activated.	-
O2SEN HTR DTY [%]			 Indicates the heated oxygen sensor 1 heater control value computed by the ECM according to the input signals. 	
TRGT FAN RPM [rpm]			 The target speed of cooling fan opera- tion (determined by the ECM according to the input signals) is displayed. 	
RADIATOR TEMP [°C] or [°F]			 The radiator coolant temperature (determined by the signal of the radiator coolant temperature sensor) is displayed. 	
AC PRESS SEN [V]			 The signal voltage from the refrigerant pressure sensor is displayed. 	
Voltage [V]				• Only "#" in displayed if item is
Frequency [msec], [Hz] or [%]			Voltage, frequency, duty cycle or pulse	Only "#" is displayed if item is unable to be measured. Figures with "#"s are temperary.
DUTY-HI			width measured by the probe.	 Figures with "#"s are temporary ones. They are the same figures
DUTY-LOW				as an actual piece of data which
PLS WIDTH-HI				was just previously measured.
PLS WIDTH-LOW				

NOTE

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

DATA MONITOR (SPEC) MODE Monitored Item

D

Е

F

G

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks	E
ENG SPEED [rpm]	×	×	 Indicates the engine speed computed from the signals of the crankshaft posi- tion sensor (POS) and camshaft position sensor (PHASE). 		-
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor specification is displayed.	When engine is running specification range is indicated.	=
B/FUEL SCHDL [msec]		×	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	When engine is running specification range is indicated.	_
A/F ALPHA-B1 [%] A/F ALPHA-B2 [%]		×	The mean value of the air-fuel ratio feed-back correction factor per cycle is indicated.	 When engine is running specification range is indicated. This data also includes the data for the air-fuel ratio learning control. 	_

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE

Test Item

- 1-	-

Test Item			
TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJEC- TION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorsFuel injectorHeated oxygen sensor 1
IGNITION TIM- ING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Perform Idle Air Volume Learning.
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch: OFF Selector lever: P or N Cut off each injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connectors Compression Fuel injector Power transistor Spark plug Ignition coil
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorsEngine coolant temperature sensorFuel injector
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Fuel pump relay makes the operating sound.	Harness and connectorsFuel pump relay
VIAS SOL VALVE	 Ignition switch: ON Turn solenoid valve "ON" and "OFF" with CONSULT-II and listen for operating sound. 	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-II. 	Engine speed changes according to the opening percent.	Harness and connectors Solenoid valve
FUEL/T TEMP SEN	Change the fuel tank temperature	using CONSULT-II.	
VENT CON- TROL/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve
FPCM	 Engine: Returns to the original trouble condition Select "LOW" and "HI" with CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors FPCM
VC/V BYPASS/V	 Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound. 	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve
V/T ASSIGN ANGLE	 Engine: Return to the original trouble condition Change intake valve timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors Intake valve timing control solenoid valve
TARGET FAN RPM	 Engine: After warming up, idle the engine Change the target speed of cool- ing fan using CONSULT-II. 	Cooling fan operating speed changes according to the target speed.	 Harness and connectors Cooling fan speed control solenoid valve Cooling fan pump Cooling fan drive pump

DTC & SRT CONFIRMATION MODE SRT STATUS Mode

For details, refer to EC-55, "SYSTEM READINESS TEST (SRT) CODE" .

SRT WORK SUPPORT Mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

Test mode	Test item	Condition	Reference page
	PURGE FLOW P0441		EC-327
	EVAP SML LEAK P0442/P1442		EC-333, EC-535
EVAPORATIVE SYS- TEM	EVAP V/S LEAK P0456/P1456		EC-378, EC-565
I LIVI	PURG VOL CN/V P1444		EC-544
	VC CUT/V BP/V P1491		EC-590
	HO2S1 (B1) P0133		EC-224
	HO2S1 (B1) P0134		EC-236
	HO2S1 (B1) P1143		EC-468
	HO2S1 (B1) P1144		EC-474
HO2S1	HO2S1 (B2) P0153	Refer to corresponding trouble diagnosis for	EC-224
	HO2S1 (B2) P0154	DTC.	EC-236
	HO2S1 (B2) P1163		EC-468
	HO2S1 (B2) P1164		EC-474
	HO2S2 (B1) P0139		EC-254
	HO2S2 (B1) P1146		EC-481
H02S2	HO2S2 (B1) P1147		EC-493
MUZOZ	HO2S2 (B2) P0159		EC-254
	HO2S2 (B2) P1166		EC-481
	HO2S2 (B2) P1167		EC-493

Revision: 2004 October **EC-119** 2004 M45

·C

D

Е

F

G

Н

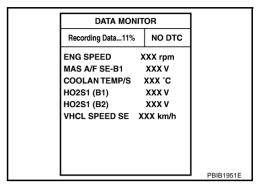
Κ

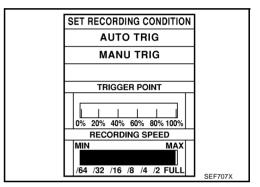
L

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA) Description

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

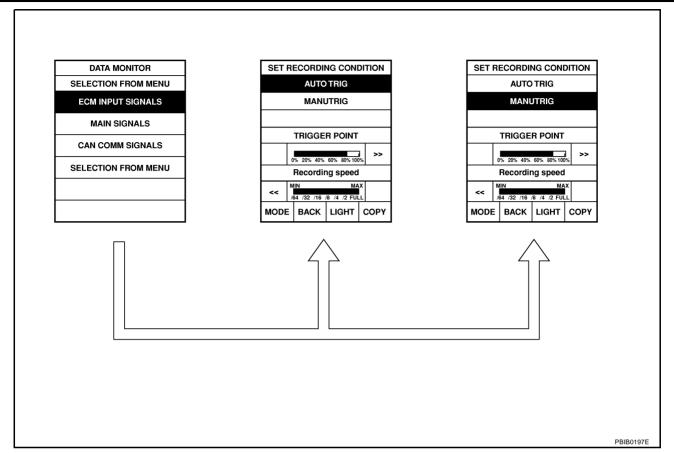
- "AUTO TRIG" (Automatic trigger):
 - The malfunction will be identified on the CONSULT-II screen in real time.


In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.


At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data... xx%" as shown at right, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data... xx%", "REAL-TIME DIAG" screen is also displayed.

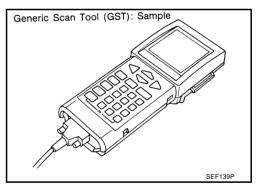
The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II Operation Manual.

- "MANU TRIG" (Manual trigger):
 - DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.


DATA MONITOR can be performed continuously even though a malfunction is detected.

Operation

- 1. "AUTO TRIG"
 - While trying to detect the DTC/1st trip DTC by performing the DTC Confirmation Procedure, be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
 - While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.
 - When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the DTC Confirmation Procedure, the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to "Incident Simulation Tests" in GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident".)
- 2. "MANU TRIG"
 - If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.



Generic Scan Tool (GST) Function DESCRIPTION

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained below.

ISO9141 is used as the protocol.

The name GST or Generic Scan Tool is used in this service manual.

FUNCTION

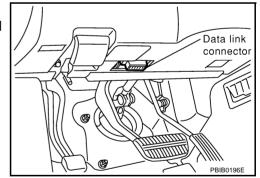
Revision: 2004 October

Diagnostic test mode		Function
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. For details, refer to EC-54, "FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA".
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.

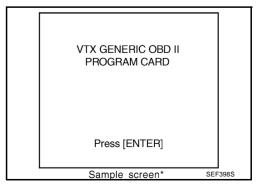
Α

EC

D


Н

ABS002DV


Di	agnostic test mode	Function
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
MODE 8	_	This mode can close EVAP system in ignition switch ON position (Engine stopped). When this mode is performed, the following parts can be opened or closed. • EVAP canister vent control valve: closed • Vacuum cut valve bypass valve: open In the following conditions, this mode cannot function. • Low ambient temperature • Low battery voltage • Engine running • Ignition switch OFF • Low fuel temperature • Too much pressure is applied to EVAP system
MODE 9	(CALIBRATION ID)	This mode enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.

INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- 2. Connect GST to data link connector, which is located under LH dash panel near the fuse box cover.

- 3. Turn ignition switch ON.
- 4. Enter the program according to instruction on the screen or in the operation manual.
- (*: Regarding GST screens in this section, sample screens are shown.)

Perform each diagnostic mode according to each service proce-

For further information, see the GST Operation Manual of the tool maker.

OBD II FUNCTIONS

F0: DATA LIST

F1: FREEZE DATA

F2: DTCs

F3: SNAPSHOT

F4: CLEAR DIAG INFO

F5: O2 TEST RESULTS

F6: READINESS TESTS

F7: ON BOARD TESTS

F8: EXPAND DIAG PROT F9: UNIT CONVERSION

Sample screen*

SEF416S

CONSULT-II Reference Value in Data Monitor Mode

ABS002DW

Α

EC

D

F

G

Н

M

Remarks:

Specification data are reference values.

Specification data are output/input values which are detected or supplied by the ECM at the connector.

* Specification data may not be directly related to their components signals/values/operations.
i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM

	0	nsor and other ignition timing related sensors	
MONITOR ITEM	CC	ONDITION	SPECIFICATION
ENG SPEED	Run engine and compare the CON	Almost the same speed as the tachometer indication.	
MAS A/F SE-B1	See EC-128, "TROUBLE DIAGNOS	IS - SPECIFICATION VALUE" .	
B/FUEL SCHDL	See EC-128, "TROUBLE DIAGNOS	IS - SPECIFICATION VALUE" .	
A/F ALPHA-B1 A/F ALPHA-B2	See EC-128, "TROUBLE DIAGNOS	IS - SPECIFICATION VALUE" .	
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)
HO2S1 (B1) HO2S1 (B2)			0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.
HO2S2 (B1) HO2S2 (B2)	Engine: After warming up After keeping engine speed	Revving engine from idle up to 3,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	quickly.	LEAN ←→ RICH
VHCL SPEED SE	Turn drive wheels and compare the indication.	Almost the same speed as speedometer indication	
BATTERY VOLT	Ignition switch: ON (Engine stopped)	ed)	11 - 14V
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
ACCEL SEN 2*	(engine stopped)Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V
THRTL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN 1*	(Engine stopped) • Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V
EVAP SYS PRES	Ignition switch: ON		Approx. 1.8 - 4.8V
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$		$OFF \to ON \to OFF$
CLED THE DOC	Ignition switch: ON	Accelerator pedal: Fully released	ON
CLSD THL POS	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF
	- Fraince After warming we tall-	Air conditioner switch: OFF	OFF
AIR COND SIG	Engine: After warming up, idle the engine	Air conditioner switch: ON (Compressor operates.)	ON

MONITOR ITEM CONDITION		ONDITION	SPECIFICATION
D/N DOC: 5:::	1 11 11 21	Selector lever: P or N	ON
P/N POSI SW	Ignition switch: ON	Selector lever: Except above	OFF
PW/ST SIGNAL	• Engine: After warming up, idle	Steering wheel: Not being turned (Forward direction)	OFF
	the engine	Steering wheel: Being turned	ON
LOAD CIONAL	- Israelian suitabi ONI	Rear window defogger switch is ON and/ or lighting switch is in 2nd.	ON
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch is OFF and lighting switch is OFF.	OFF
IGNITION SW	• Ignition switch: $ON \rightarrow OFF \rightarrow ON$	N	$ON \to OFF \to ON$
LIEATED EAN OW	Engine: After warming up, idle	Heater fan: Operating.	ON
HEATER FAN SW	the engine	Heater fan: Not operating	OFF
DDAKE OW	. Inviting of 2011 ON	Brake pedal: Fully released	OFF
BRAKE SW	Ignition switch: ON	Brake pedal: Slightly depressed	ON
	Engine: After warming up	Idle	2.0 - 3.0 msec
INJ PULSE-B1 INJ PULSE-B2	 Selector lever: P or N Air conditioner switch: OFF No load 	2,000 rpm	1.9 - 2.9 msec
	Engine: After warming up	Idle	10° - 18° BTDC
IGN TIMING	 Selector lever: P or N Air conditioner switch: OFF No load 	2,000 rpm	25° - 45° BTDC
	Engine: After warming up	Idle	15% - 35%
Selector lever: P or N Air conditioner switch: OFF No load		2,500 rpm	10% - 35%
	Engine: After warming up	Idle	3.8 - 5.2 g·m/s
MASS AIRFLOW	 Selector lever: P or N Air conditioner switch: OFF No load 	2,500 rpm	16.0 - 21.5 g·m/s
	Engine: After warming up	Idle	0%
PURG VOL C/V	 Selector lever: P or N Air conditioner switch: OFF No load 	2,000 rpm	_
	Engine: After warming up	Idle	−5° - 5°CA
INT/V TIM (B1) INT/V TIM (B2)	Selector lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	Approx. 0° - 20°CA
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1) INT/V SOL (B2)	 Selector lever: P or N Air conditioner switch: OFF No load 	2,000 rpm	Approx. 25% - 50%
VIAS S/V	Engine speed: Idle	Selector lever: P or N Engine speed: More than 5,000 rpm	ON
		Except above	OFF
	- Engine, After ware in a control	Air conditioner switch: OFF	OFF
AIR COND RLY	Engine: After warming up, idle the engine	Air conditioner switch: ON (Compressor operates)	ON

MONITOR ITEM	CC	ONDITION	SPECIFICATION	-
	For 5 seconds after turning ignition switch ON		ON	-
FUEL PUMP RLY	Engine running or cranking			
	Except above		OFF	
	Engine: Cranking		HI	
FPCM	Engine: Idle		1014	-
	Engine coolant temperature: More	e than 10°C (50°F)	LOW	
VC/V BYPAS S/V	Ignition switch: ON		OFF	-
VENT CONT/V	Ignition switch: ON		OFF	-
THRTL RELAY	Ignition switch: ON		ON	_
	Engine: After warming up		ON	=
HO2S1 HTR (B1) HO2S1 HTR (B2)	Engine speed: Below 3,000 rpm			
110231111K (B2)	Engine speed: Above 3,000 rpm		OFF	-
	Engine is running below 3,600 rpm after the following conditions are met.			-
LICOCO LITE (E4)	- Engine: After warming up		ON	
HO2S2 HTR (B1) HO2S2 HTR (B2)	 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 			
	• Engine speed: Above 3,600 rpm		OFF	-
TRVL AFTER MIL	Ignition switch: ON	Vehicle has traveled after MIL has turned ON.	0 - 65,535 km (0 - 40,723 mile)	=
TRGT FAN RPM	Ignition switch: ON (Engine stopped)		0 rpm	-
	Engine: Idle		300 - 2,550 rpm	-
	Engine: Idle			-
AC PRESS SEN	 Both A/C switch and blower switc (Compressor operates.) 	h are ON	1.0 - 4.0V	

^{*:} Accelerator pedal position sensor 2 signal and throttle position sensor 2 signal are converted by ECM internally. Thus, they differ from ECM terminals voltage signal.

EC

D

Е

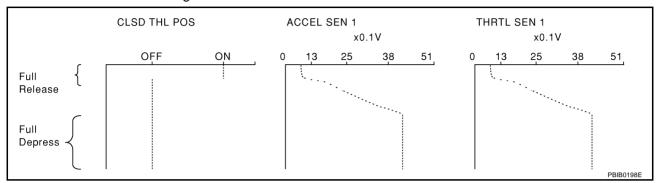
G

Н

K

L

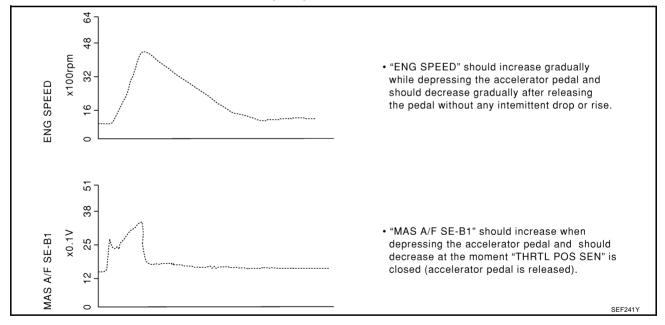
Major Sensor Reference Graph in Data Monitor Mode

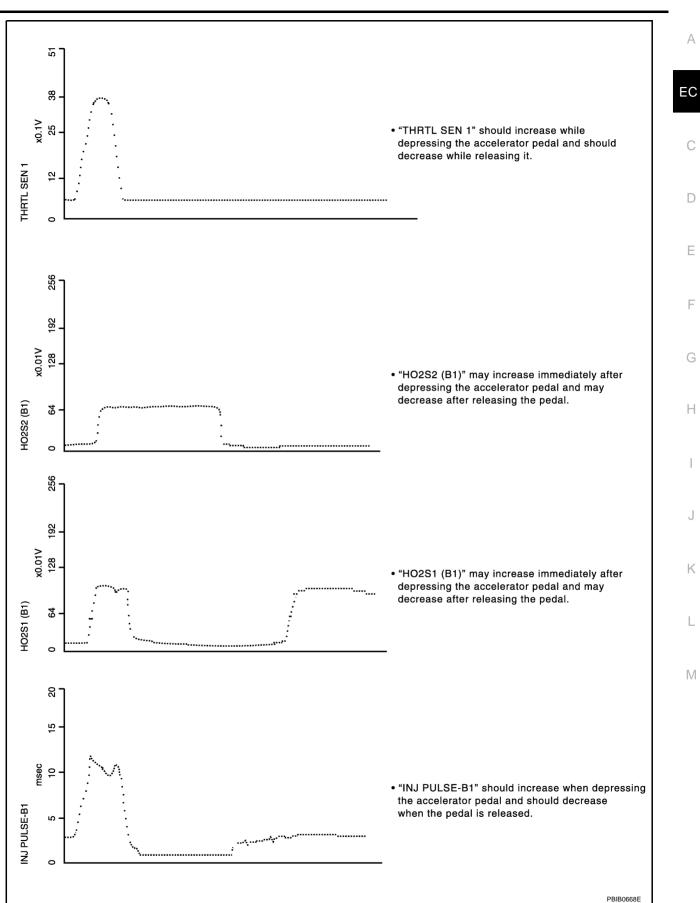

ABS002DX

The following are the major sensor reference graphs in "DATA MONITOR" mode.

CLSD THL POS, ACCEL SEN 1, THRTL SEN 1

Below is the data for "CLSD THL POS", "ACCEL SEN 1" and "THRTL SEN 1" when depressing the accelerator pedal with the ignition switch ON and with selector lever in D position.


The signal of "ACCEL SEN 1" and "THRTL SEN 1" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from "ON" to "OFF".



ENG SPEED, MAS A/F SE-B1, THRTL SEN 1, HO2S2 (B1), HO2S1 (B1), INJ PULSE-B1

Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL SEN 1", "HO2S2 (B1)", "HO2S1 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently.

Each value is for reference, the exact value may vary.

2004 M45

D

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

PFP:00031

Description

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

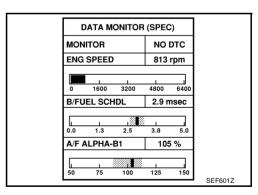
The SP value will be displayed for the following three items:

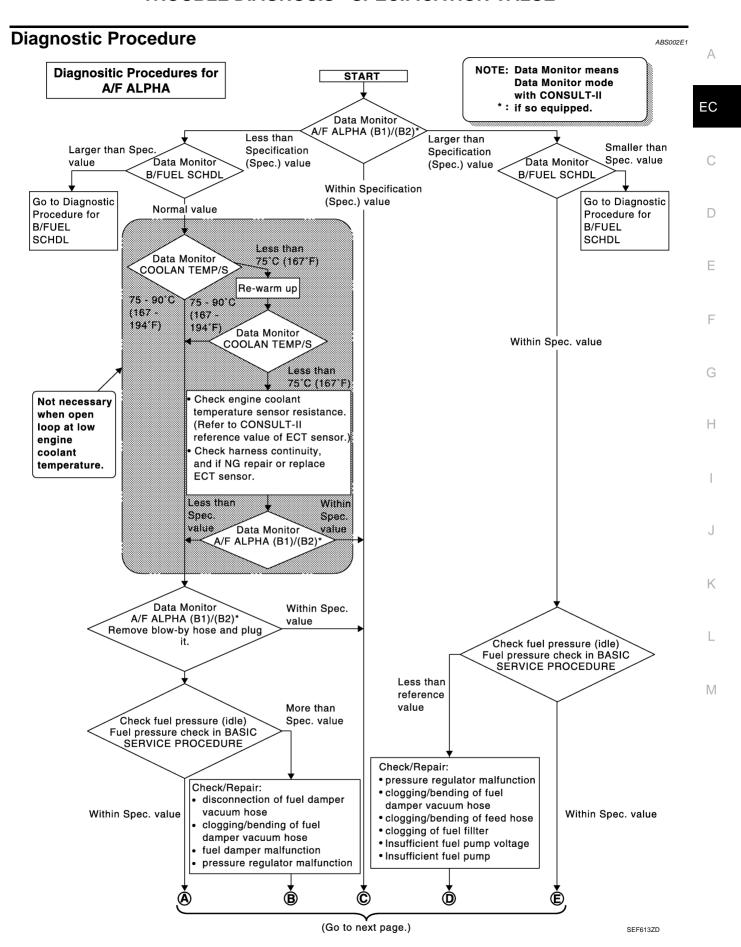
- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

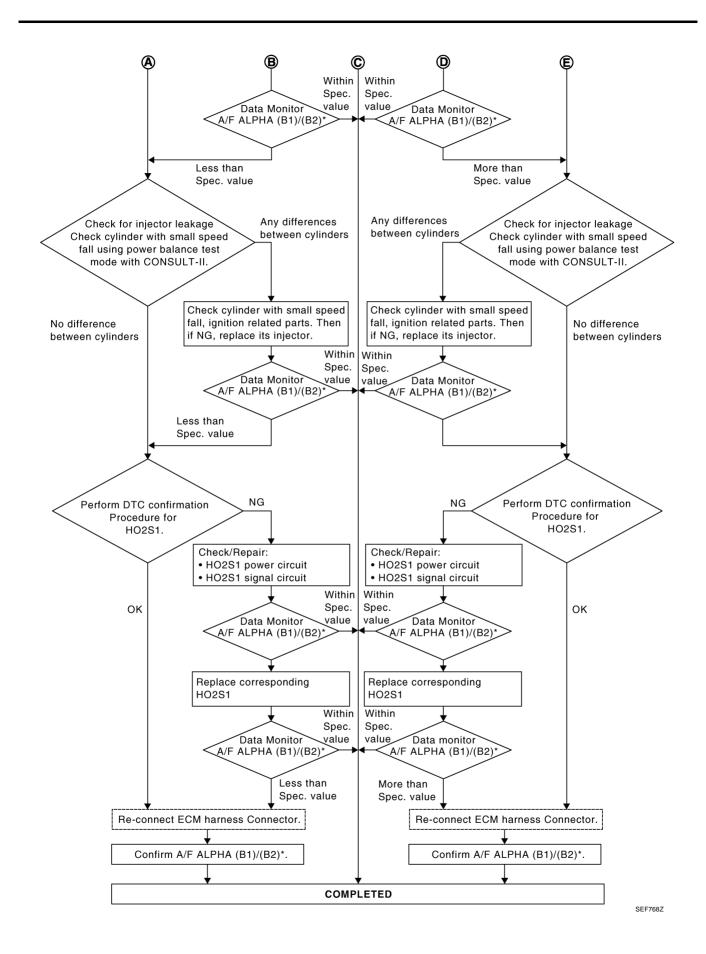
Testing Condition

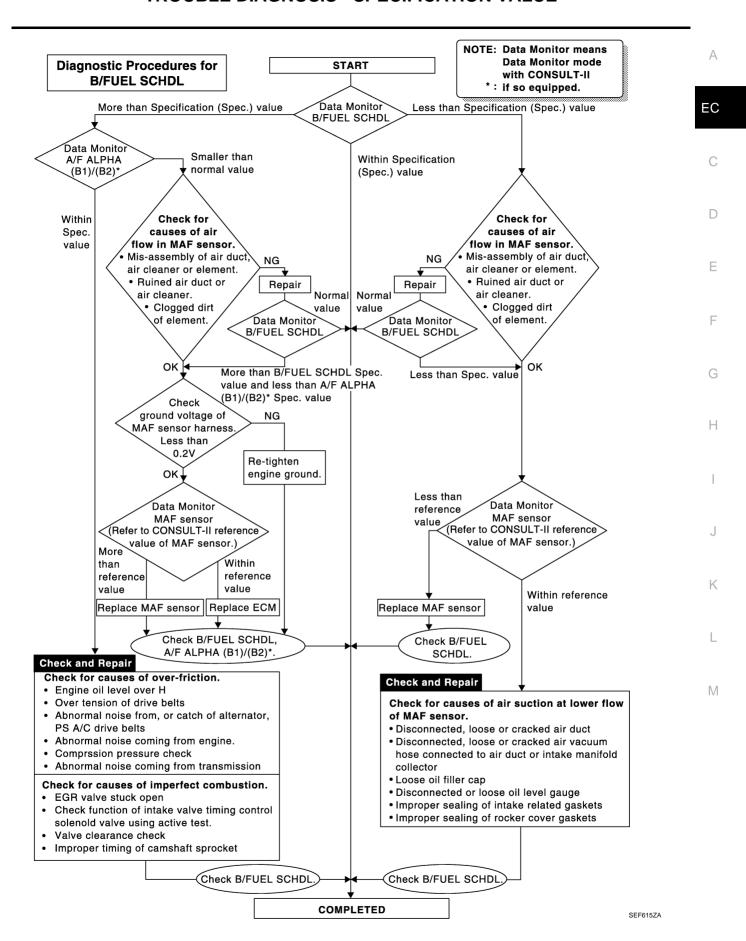
ARS002DZ

- Vehicle driven distance: More than 5,000 km (3,017 miles)
- Barometric pressure: 98.3 104.3 kPa (1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up*1
- Electrical load: Not applied*²
- Engine speed: Idle
- *1: After the engine is warmed up to normal operating temperature, drive vehicle until "ATF TEMP 1" (A/T fluid temperature sensor signal) indicates more than 60°C (140°F).
- *2: Rear window defogger switch, air conditioner switch, lighting switch are OFF. Steering wheel is straight ahead.


Inspection Procedure


ABS002E0


NOTE:


Perform "DATA MONITOR (SPEC)" mode in maximum scale display.

- Perform <u>EC-81</u>, "Basic Inspection".
- 2. Confirm that the testing conditions indicated above are met.
- Select "B/FUEL SCHDL", "A/F ALPHA-B1", "A/F ALPHA-B2" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.
- 4. Make sure that monitor items are within the SP value.
- 5. If NG, go to EC-129, "Diagnostic Procedure".

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

PFP:00006

Description

ABS002F2

Intermittent incidents may occur. In many cases, the malfunction resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific malfunctioning area.

Common Intermittent Incidents Report Situations

STEP in Work Flow	Situation
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than[0] or [1t].
III	The symptom described by the customer does not recur.
IV	(1st trip) DTC does not appear during the DTC Confirmation Procedure.
VI	The Diagnostic Procedure for PXXXX does not indicate the malfunctioning area.

Diagnostic Procedure

ABS002F3

1. INSPECTION START

Erase (1st trip) DTCs. Refer to $\underline{\text{EC-62}}$, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

>> GO TO 2.

2. CHECK GROUND TERMINALS

Check ground terminals for corroding or loose connection.

Refer to EC-141, "Ground Inspection".

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

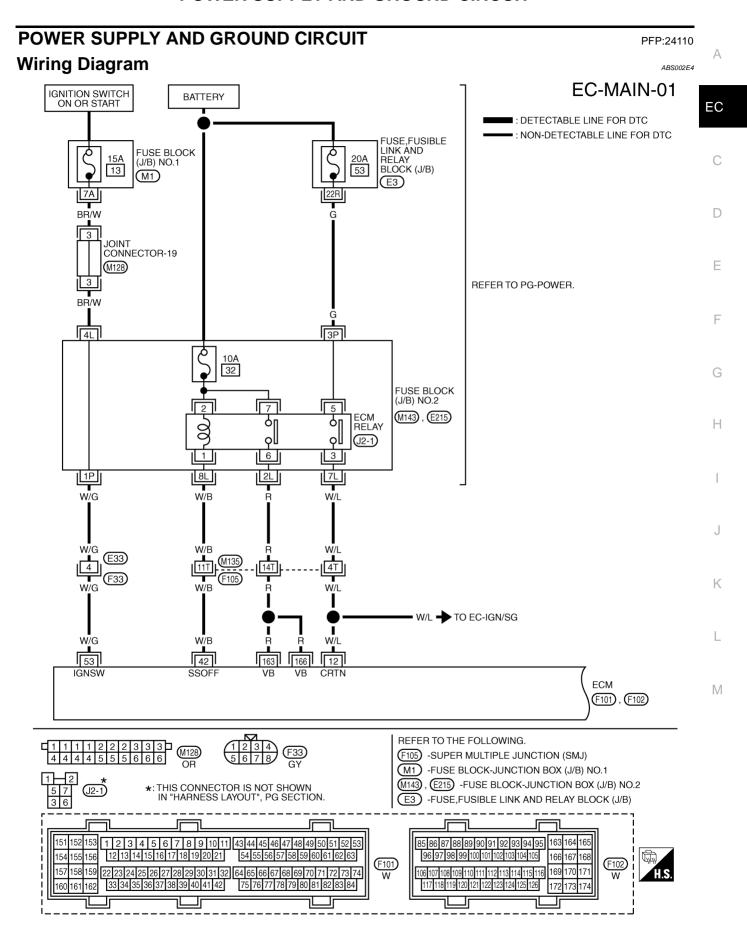
3. SEARCH FOR ELECTRICAL INCIDENT

Perform GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident", "INCIDENT SIMULATION TESTS".

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.


4. CHECK CONNECTOR TERMINALS

Refer to GI-23, "How to Check Terminal", "HOW TO PROBE CONNECTORS", "How to Check Enlarged Contact Spring of Terminal".

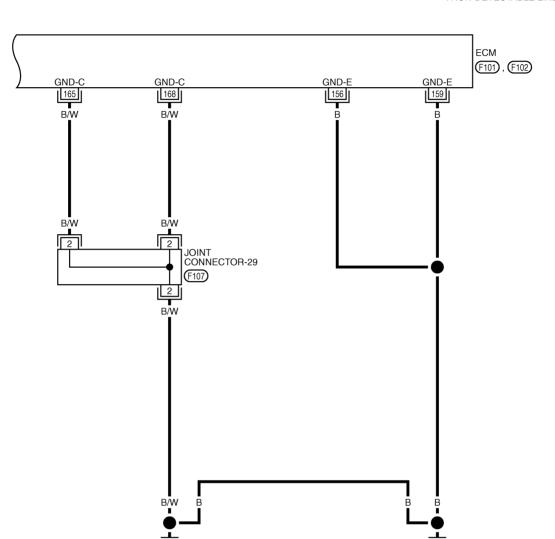
OK or NG

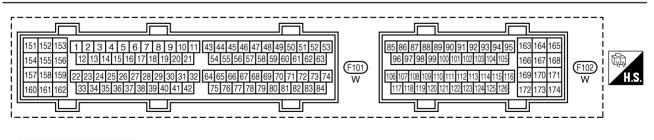
OK >> INSPECTION END

NG >> Repair or replace connector.

TBWA0260E

Specification data are reference values and are measured between each terminal and ground.


CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12	W/L	Counter current return	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
42	ECM relay	[Engine is running] [Ignition switch: OFF] • A few seconds after turning ignition switch OFF	0 - 1.0V	
42 W/B	VV/B	(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: OFF]	OV
53 W/	W/G	W/G Ignition switch	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
163 166	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

EC-MAIN-02

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

1 1 1 1 1 2 2 2 2 2 2 1 F107 P

TBWA0261E

EC

С

D

Е

F

G

Н

J

N

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
156 159 165 168	B B B/W B/W	ECM ground	[Engine is running] • Idle speed	Engine ground

Diagnostic Procedure

ABS00D1M

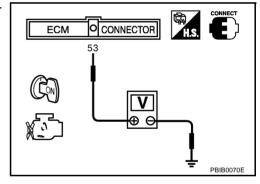
1. INSPECTION START

Start engine.

Is engine running?

Yes or No

Yes >> GO TO 12. No >> GO TO 2.


2. CHECK ECM POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF and then ON.
- 2. Check voltage between ECM terminal 53 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

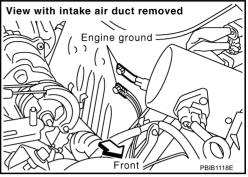
OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E33, F33
- Fuse block (J/B) No. 1 connector M1
- Fuse block (J/B) No. 2 connector M143, E215
- Joint connector-19
- 15A fuse
- Harness for open or short between ECM and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.


4. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to EC-141, "Ground Inspection".

OK or NG

OK >> GO TO 5.

NG >> Repair or replace ground connections.

5. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-I

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminals 156, 159, 165, 168 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

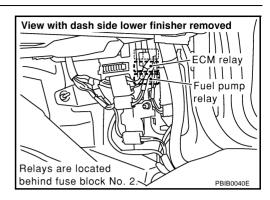
6. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-29
- Harness for open or short between ECM and ground
 - >> Repair open circuit or short to power in harness or connectors.

EC

Е

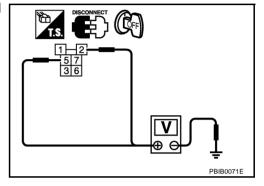

D

G

Н

7. CHECK POWER SUPPLY-II

Disconnect ECM relay.



2. Check voltage between ECM relay terminals 2, 5 and ground with CONSULT-II or tester.

Voltage :Battery voltage

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- 20A fuse
- Fuse block (J/B) No. 2 connector E215
- Fuse, fusible link and relay block (J/B) connector E3
- Harness for open or short between ECM relay and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 42 and ECM relay terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 11. NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Fuse block (J/B) No. 2 connector M143
- Harness for open or short between ECM relay and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

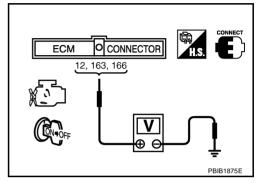
11. CHECK ECM RELAY

Refer to EC-142, "Component Inspection".

OK or NG

OK >> Go to EC-649, "IGNITION SIGNAL".

NG >> Replace ECM relay.


12. CHECK ECM POWER SUPPLY CIRCUIT-III

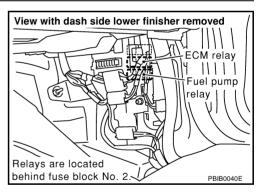
- Turn ignition switch ON and then OFF.
- Check voltage between ECM terminals 12, 163, 166 and ground with CONSULT-II or tester.

Voltage: After turning ignition switch OFF, battery

voltage will exist for a few seconds, then

drop approximately 0V.

OK or NG

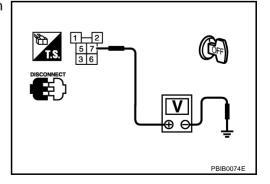

OK >> GO TO 18.

NG (Battery voltage does not exist.)>>GO TO 13.

NG (Battery voltage exists for more than a few seconds.)>>GO TO 15.

13. CHECK ECM POWER SUPPLY CIRCUIT-IV

1. Disconnect ECM relay.



Check voltage between ECM relay terminal 7 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

>> GO TO 15. OK NG >> GO TO 14.

EC

D

F

Н

14. DETECT MALFUNCTIONING PART

Check the following:

- 10A fuse
- Harness for open or short between ECM relay and battery.
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

15. CHECK HARNESS CONTINUITY BETWEEN ECM RELAY AND ECM FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminals and ECM relay terminals as follows. Refer to Wiring Diagram.

ECM terminal	ECM relay terminal	
12	3	
163, 166	6	

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 17. NG >> GO TO 16.

16. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Fuse block (J/B) No. 2 connector M143
- Harness for open or short between ECM and ECM relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

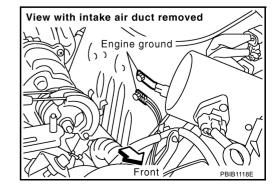
17. CHECK ECM RELAY

Refer to EC-142, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace ECM relay.


18. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

OK or NG

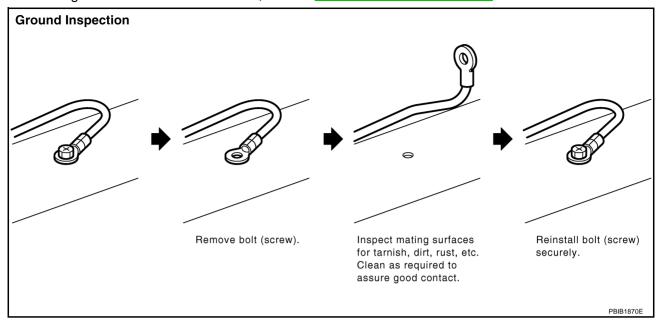
OK >> GO TO 19.

NG >> Repair or replace ground connections.

19. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-II Turn ignition switch OFF. 2. Disconnect ECM harness connector. EC Check harness continuity between ECM terminals 156, 159, 165, 168 and ground. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to power. OK or NG OK >> GO TO 21. NG >> GO TO 20. 20. DETECT MALFUNCTIONING PART F Check the following. Joint connector-29 Harness for open or short between ECM and ground >> Repair open circuit or short to power in harness or connectors. 21. CHECK INTERMITTENT INCIDENT Н Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". >> INSPECTION END **Ground Inspection** Ground connections are very important to the proper operation of electrical and electronic circuits. Ground

connections are very important to the proper operation of electrical and electronic circuits. Ground connections are often exposed to moisture, dirt and other corrosive elements. The corrosion (rust) can become an unwanted resistance. This unwanted resistance can change the way a circuit works.

Electronically controlled circuits are very sensitive to proper grounding. A loose or corroded ground can drastically affect an electronically controlled circuit. A poor or corroded ground can easily affect the circuit. Even when the ground connection looks clean, there can be a thin film of rust on the surface. When inspecting a ground connection follow these rules:

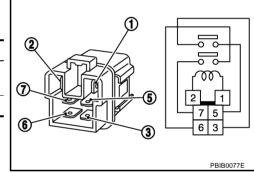

when inspecting a ground connection follow the

- Remove the ground bolt or screw.
- Inspect all mating surfaces for tarnish, dirt, rust, etc.
- Clean as required to assure good contact.
- Reinstall bolt or screw securely.
- Inspect for "add-on" accessories which may be interfering with the ground circuit.
- If several wires are crimped into one ground eyelet terminal, check for proper crimps. Make sure all of the wires are clean, securely fastened and providing a good ground path. If multiple wires are cased in one eyelet make sure no ground wires have excess wire insulation.

M

Revision: 2004 October **EC-141** 2004 M45

For detailed ground distribution information, refer to PG-14, "Ground Distribution".


Component Inspection ECM RELAY

ABS002E6

- 1. Apply 12V direct current between ECM relay terminals 1 and 2.
- 2. Check continuity between relay terminals 3 and 5, 6 and 7.

Condition	Continuity
12V direct current supply between terminals 1 and 2	Yes
OFF	No

3. If NG, replace ECM relay.

DTC U1000, U1001 CAN COMMUNICATION LINE

DTC U1000, U1001 CAN COMMUNICATION LINE

PFP:23710

Description

4 DC002 E-7

Α

EC

D

F

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

ABS002E8

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1000* ¹ 1000* ¹	CAN communication line	ECM cannot communicate to other control units. CCM connect communicate for more than the	Harness or connectors (CAN communication line is open or shorted)
U1001* ² 1001* ²		 ECM cannot communicate for more than the specified time. 	

^{*1:} This self-diagnosis has the one trip detection logic.

DTC Confirmation Procedure

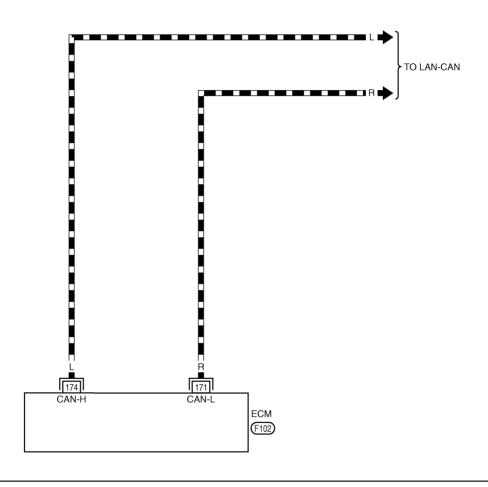
ABS002F9

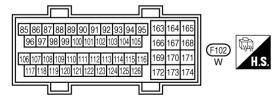
- 1. Turn ignition switch ON and wait at least 3 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. If 1st trip DTC is detected, go to EC-145, "Diagnostic Procedure".

Н

J

K


^{*2:} The MIL will not light up for this diagnosis.


Wiring Diagram

ABS002EA

EC-CAN-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC
: DATA LINE

TBWA0262E

DTC U1000, U1001 CAN COMMUNICATION LINE

Diagnostic Procedure

ABS002EB

Go to LAN-21, "CAN Communication Unit" .

EC

С

D

Е

F

G

Н

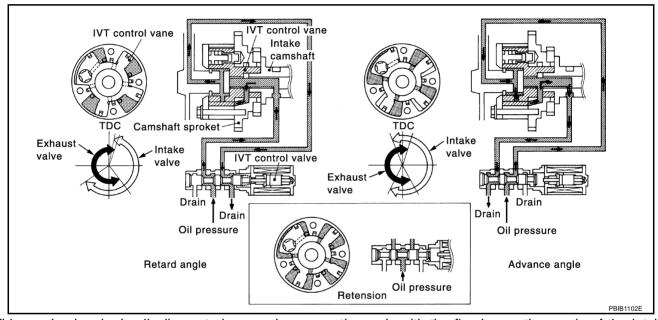
J

Κ

M

PFP:23796

Description


ABS002EC

If DTC P1110 or P1135 is displayed with DTC P1111, P1136, P1140 or P1145, first perform the trouble diagnosis for <u>EC-428</u>, "DTC P1111, P1136 IVT CONTROL SOLENOID VALVE" or <u>EC-460</u>, "DTC P1140, P1145 IVT CONTROL POSITION SENSOR".

SYSTEM DESCRIPTION

Sensor	Input signal to ECM function	ECM	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Intake valve timing control solenoid valve	
Intake valve timing control position sensor	Intake valve timing signal		
Engine coolant temperature sensor	Engine coolant temperature		Soleriola valve
Wheel sensor*	Vehicle speed		

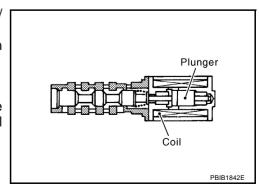
^{*:} This signal is sent to the ECM through CAN communication line.

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing (IVT) control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

COMPONENT INSPECTION

Intake Valve Timing Control Solenoid Valve

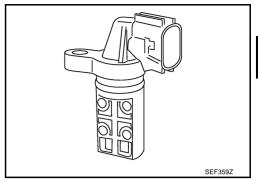

Intake Valve Timing (IVT) control solenoid valve is activated by ON/ OFF pulse duty (ratio) signals from the ECM.

The IVT control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.



Intake Valve Timing Control Position Sensor

Intake valve timing control position sensors are located in the front of cylinder heads in both bank 1 and bank 2.

This sensor uses a Hall IC.

The cam position is determined by the intake primary cam sprocket concave (in three places). The ECM provides feedback to the intake valve timing control for appropriate target valve open-close timing according to drive conditions based on detected cam position.

CONSULT-II Reference Value in Data Monitor Mode

ABS002FD

EC

D

F

G

Н

M

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	–5° - 5°CA
INT/V TIM (B1) INT/V TIM (B2)	Selector lever: P or NAir conditioner switch: OFFNo load	When revving engine up to 2,000 rpm quickly	Approx. 0° - 20°CA
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1) INT/V SOL (B2)	 Selector lever: P or N Air conditioner switch: OFF No load 	When revving engine up to 2,000 rpm quickly	Approx. 25% - 50%

On Board Diagnosis Logic

ABS002EE

DTC No.	Trouble diagnosis name	Detecting condition		Possible cause
P0011 0011 (Bank 1)		А	The alignment of the intake valve timing control has been misresistered.	Harness or connectors (Intake valve timing control solenoid valve circuit is open or shorted.)
P0021 0021 (Bank 2)	Intake valve timing control performance	В	There is a gap between angle of target and phase-control angle degree.	 Harness or connectors (Intake valve timing control position sensor circuit is open or shorted.) Intake valve timing control solenoid valve Intake valve timing control position sensor Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Accumulation of debris to the signal pick-up portion of the camshaft

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function

DTC Confirmation Procedure

ABS002EF

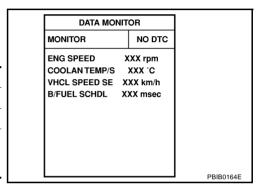
CAUTION:

Always drive at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:


Before performing the following procedure, confirm that battery voltage is between 10V and 16V at idle.

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm (A constant rotation is maintained.)
COOLAN TEMP/S	More than 70°C (158°F)
Selector lever	D position
Driving location uphill	Driving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)

 Maintain the following conditions for at least 20 consecutive seconds.

ENG SPEED	Idle
COOLAN TEMP/S	More than 70°C (158°F)
Selector lever	P or N position

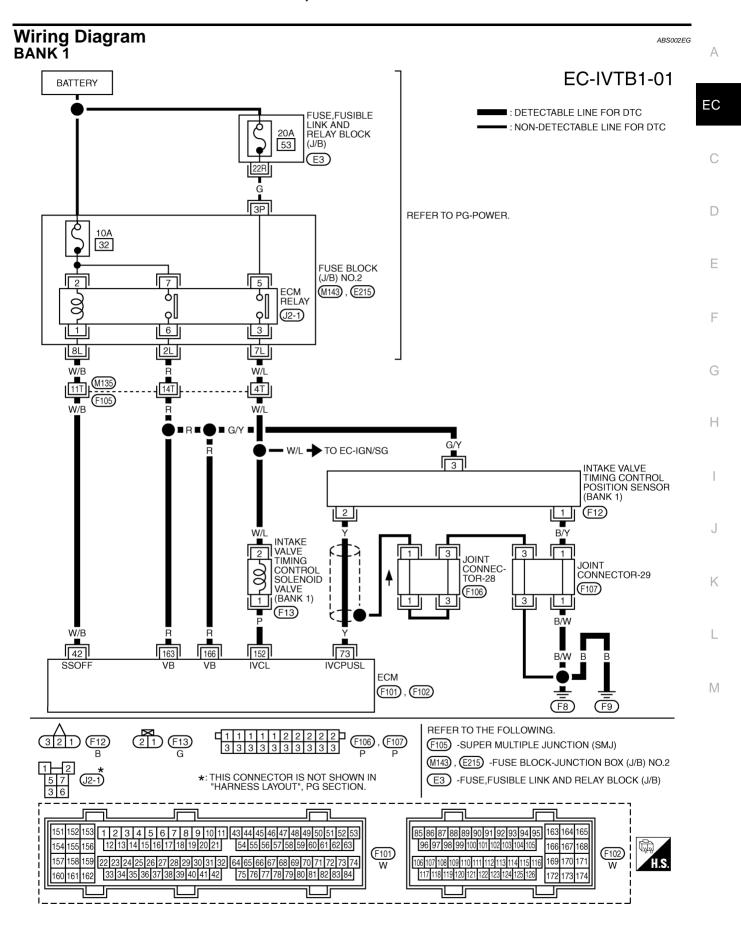
5. If the 1st trip DTC is detected, go to EC-152, "Diagnostic Procedure".

With GST

Follow the procedure With CONSULT-II above.

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II


- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Maintain the following conditions for at least 10 consecutive seconds.

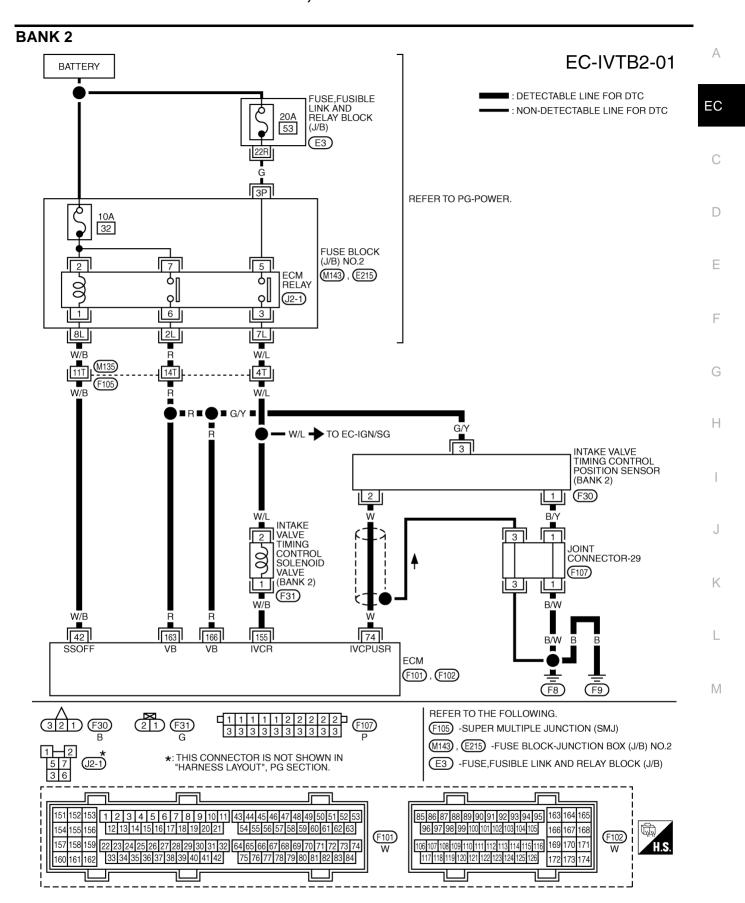
ENG SPEED	2,000 - 3,000 rpm (A constant rotation is maintained.)
COOLAN TEMP/S	80 - 90°C (176 - 194°F)
Selector lever	D position
Driving location uphill	Driving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)

If the 1st trip DTC is detected, go to <u>EC-152</u>, "<u>Diagnostic Procedure</u>".

With GST

Follow the procedure With CONSULT-II above.

TBWA0400E


Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULU-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
73	Y Intake valve timing control	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle. 	0 - 1.0V★	
70	•	position sensor (bank 1)	[Engine is running] ● Engine speed: 2,000 rpm.	0 - 1.0V★
			[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)
152	P	Intake valve timing control solenoid valve (bank 1)	[Engine is running]Warm-up conditionWhen revving engine up to 2,000 rpm quickly	7 - 12V★ → 10.0 V/Div PBIB1790E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

TBWA0401E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULU-II.

CAUTION:

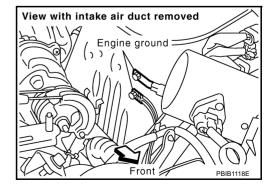
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74		Intake valve timing control position sensor (bank 2)	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle. 	0 - 1.0V★
	W		[Engine is running] ● Engine speed: 2,000 rpm.	0 - 1.0V★ → 5.0V/Div 20 ms/Div PBIB0055E
			[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)
155	W/B	Intake valve timing control solenoid valve (bank 2)	 [Engine is running] Warm-up condition When revving engine up to 2,000 rpm quickly 	7 - 12V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

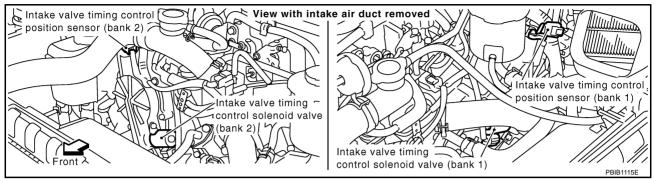
1. CHECK GROUND CONNECTIONS


Turn ignition switch OFF.

2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

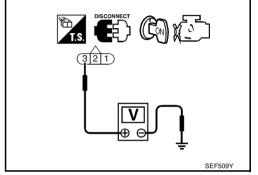
OK >> GO TO 2.


NG >> Repair or replace ground connections.

ABS002EH

2. CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR POWER SUPPLY CIRCUIT

1. Disconnect intake valve timing control position sensor harness connector.



- 2. Turn ignition switch ON.
- 3. Check voltage between intake valve timing control position sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Harness for open or short between intake valve timing control position sensor and ECM
- Harness for open or short between intake valve timing control position sensor and ECM relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between intake valve timing control position sensor terminal 1 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-29
- Harness for open or short between intake valve timing control position sensor and ground

>> Repair open circuit or short to power in harness or connectors.

EC

0

D

Е

G

Н

K

N /I

M

6. CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between the following;
 ECM terminal 73 (bank 1) and intake valve timing control position sensor terminal 2, or
 ECM terminal 74 (bank 2) and intake valve timing control position sensor terminal 2.
 Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

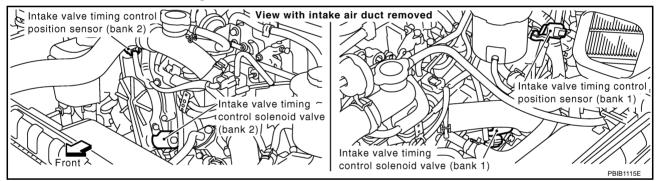
OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR

Refer to EC-155, "Component Inspection".

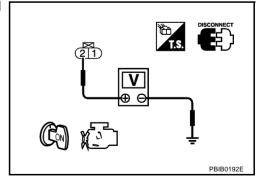

OK or NG

OK >> GO TO 8.

NG >> Replace intake valve timing control position sensor.

8. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

Disconnect intake valve timing control solenoid valve harness connector.



- Turn ignition switch ON.
- 3. Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

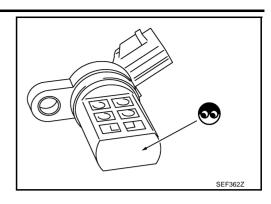
OK >> GO TO 10. NG >> GO TO 9.

9. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Harness for open or short between intake valve timing control solenoid valve and ECM relay.
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

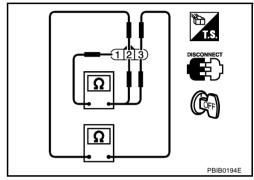
10. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR **OPEN AND SHORT** Turn ignition switch OFF. EC 2. Disconnect ECM harness connector. Check harness continuity between the following; ECM terminal 152 (bank 1) and intake valve timing control solenoid valve terminal 1 or ECM terminal 155 (bank 2) and intake valve timing control solenoid valve terminal 1. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 11. F NG >> Repair open circuit or short to ground or short to power in harness or connectors. 11. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE Refer to EC-155, "Component Inspection". OK or NG OK >> GO TO 12. NG >> Replace intake valve timing control solenoid valve. 12. CHECK CRANKSHAFT POSITION SENSOR (POS) Н Refer to EC-316, "Component Inspection". OK or NG OK >> GO TO 13. NG >> Replace crankshaft position sensor (POS). 13. CHECK CAMSHAFT POSITION SENSOR (PHASE) Refer to EC-321, "Component Inspection". OK or NG OK >> GO TO 14. NG >> Replace camshaft position sensor (PHASE). 14. CHECK CAMSHAFT Check accumulation of debris to the signal pick-up portion of the camshaft. Refer to EM-49, "CAMSHAFT". OK or NG OK >> GO TO 15. >> Remove debris and clean the signal pick-up cutout of camshaft. NG 15. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". For wiring diagram, refer to EC-310 for CKP sensor (POS), and EC-318 for CMP sensor (PHASE).


>> INSPECTION END

Component Inspection INTAKE VALVE TIMING CONTROL POSITION SENSOR

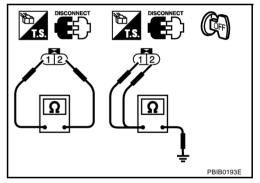
ABS002E

- 1. Disconnect intake valve timing control position sensor harness connector.
- 2. Loosen the fixing bolt of the sensor.
- Remove the sensor.


4. Visually check the sensor for chipping.

5. Check resistance as shown below.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
3 (+) - 1 (-)	
2 (+) - 1 (-)	Except 0 or ∞
3 (+) - 2 (-)	


6. If NG, replace intake valve timing control position sensor.

INTAKE VALVE TIMING CONTROL SOLENOID VALVE

- 1. Disconnect intake valve timing control solenoid valve harness connector.
- 2. Check resistance between intake valve timing control solenoid valve terminals as follows.

Terminals	Resistance
1 and 2	7.0 - 7.5Ω at [20°C (68°F)]
1 or 2 and ground	${}^{ ot}\Omega$ (Continuity should not exist)

ABS002EJ

Removal and Installation INTAKE VALVE TIMING CONTROL POSITION SENSOR

Refer to EM-38, "TIMING CHAIN".

INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EM-38, "TIMING CHAIN".

DTC P0031, P0032, P0051, P0052 HO2S1 HEATER

PFP:22690

Description SYSTEM DESCRIPTION

ABS002EK

Α

EC

D

F

G

Н

Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Heated oxygen sensor 1 heater control	Heated oxygen sensor 1 heater	
Engine coolant temperature sensor	Engine coolant temperature	TICALCI COTILIOI		

The ECM performs ON/OFF control of the heated oxygen sensor 1 heater corresponding to the engine speed and engine coolant temperature. The duty percent varies with engine coolant temperature when engine is started.

OPERATION

Engine speed rpm	Heated oxygen sensor 1 heater	
Above 3,000	OFF	
Below 3,000 after warming up	ON	

CONSULT-II Reference Value in Data Monitor Mode

ABS002EL

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S1 HTR (B1) HO2S1 HTR (B2)	Engine: After warming upEngine speed: Below 3,000 rpm	ON
(Engine speed: Above 3,000 rpm	OFF

On Board Diagnosis Logic

ABS002EM

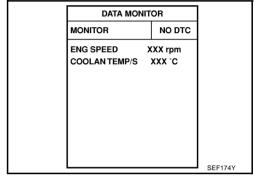
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0031 0031 (Bank 1)	Heated oxygen sensor 1	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 1 heater)	J
P0051 0051 (Bank 2)	heater control circuit low	(An excessively low voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	circuit is open or shorted.)Heater oxygen sensor 1 heater	K
P0032 0032 (Bank 1)	Heated oxygen sensor 1	The current amperage in the heated oxygen sensor 1 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 1 heater)	L
P0052 0052 (Bank 2)	g \	(An excessively high voltage signal is sent to ECM through the heated oxygen sensor 1 heater.)	circuit is shorted.) • Heater oxygen sensor 1 heater	N

DTC Confirmation Procedure

ABS002EN

NOTE:

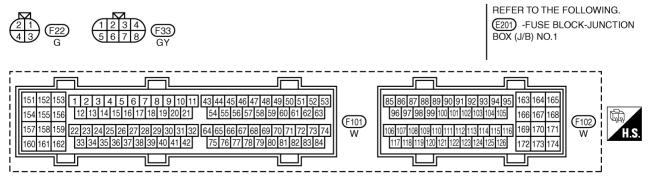
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and let it idle for at least 6 seconds.
- If 1st trip DTC is detected, go to <u>EC-162, "Diagnostic Procedure"</u>


.

WITH GST

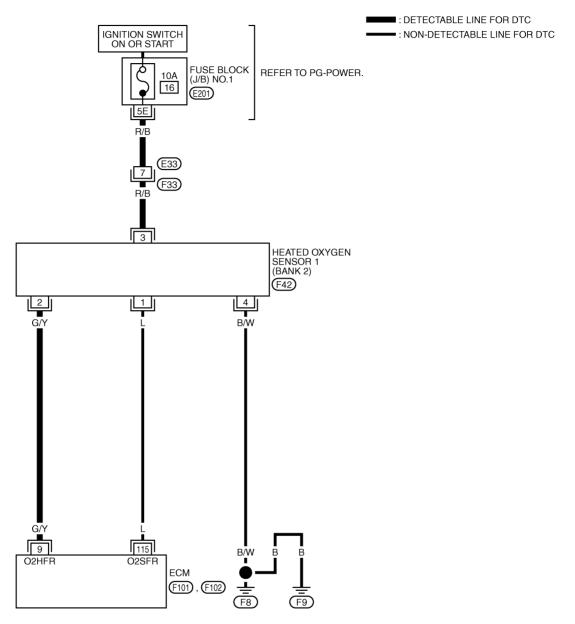
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 6 seconds.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Start engine and let it idle for at least 6 seconds.
- 6. Select "MODE 3" with GST.
- 7. If DTC is detected, go to EC-162, "Diagnostic Procedure".
 - When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

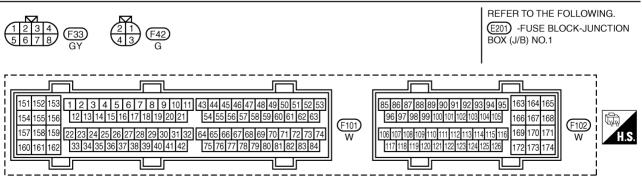
DTC P0031, P0032, P0051, P0052 HO2S1 HEATER Wiring Diagram BANK 1 ABS002EO Α EC-O2H1B1-01 EC ■: DETECTABLE LINE FOR DTC IGNITION SWITCH ON OR START : NON-DETECTABLE LINE FOR DTC С FUSE BLOCK REFER TO PG-POWER. 10A (J/B) NO.1 16 (E201) 5E D Е R/B 3 HEATED OXYGEN SENSOR 1 (BANK 1) G (F22) L/R Н L/R 114 8 O2HFL O2SFL **ECM** (F101), (F102) M (F9)

TBWA0267E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
8	BR	Heated oxygen sensor 1 heater (bank 1)	[Engine is running]Warm-up conditionEngine speed: Below 3,000 rpm.	Approximately 7V★
			[Engine is running]Engine speed: Above 3,000 rpm.	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

BANK 2

EC-O2H1B2-01

TBWA0268E

EC

Α

C

D

Е

G

Н

M

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

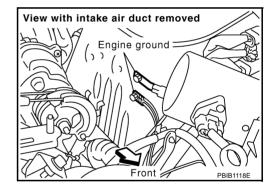
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
9	G/Y	Heated oxygen sensor 1 heater (bank 2)	[Engine is running]Warm-up conditionEngine speed: Below 3,000 rpm.	Approximately 7V★
			[Engine is running] • Engine speed: Above 3,000 rpm.	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

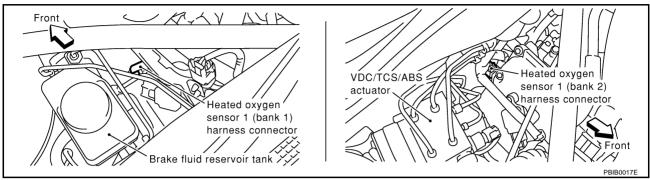
1. CHECK GROUND CONNECTIONS


1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

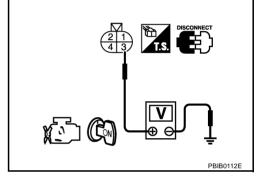
OK >> GO TO 2.


NG >> Repair or replace ground connections.

ABS002FF

2. CHECK HO2S1 POWER SUPPLY CIRCUIT

Disconnect heated oxygen sensor 1 harness connector.



- Turn ignition switch ON.
- Check voltage between HO2S1 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. >> GO TO 3. NG

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E33, F33
- Fuse block (J/B) No.1 connector E201
- Harness for open or short between heated oxygen sensor 1 and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HO2S1 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF. 1.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dank
P0031, P0032	8	2	1
P0051, P0052	9	2	2

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

Revision: 2004 October

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC-163

EC

M

5. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-164, "Component Inspection".

OK or NG

OK >> GO TO 6.

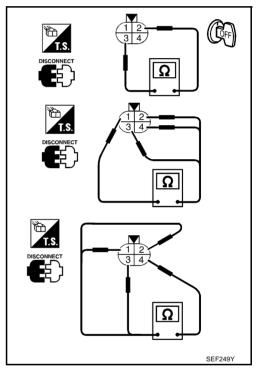
NG >> Replace malfunctioning heated oxygen sensor 1.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1 HEATER


1. Check resistance between HO2S1 terminals as follows.

Terminal No.	Resistance
2 and 3	3.3 - 4.0 Ω [at 25°C (77°F)]
1 and 2, 3, 4	Ω
4 and 1, 2, 3	(Continuity should not exist)

2. If NG, replace heated oxygen sensor 1.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

Refer to EM-22, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

ABS002ER

ABS002EQ

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

PFP:226A0

Description SYSTEM DESCRIPTION

ABS002ES

Α

EC

D

F

F

G

Н

M

Sensor	Input Signal to ECM	ECM function	Actuator
Camshaft position sensor (PHASE)	- Engine speed		
Crankshaft position sensor (POS)	- Engine speed	Heated oxygen sensor 2	Heated oxygen sensor 2 heater
Engine coolant temperature sensor	Engine coolant temperature	heater control	ricalcu Oxygeri SeriSOI Z fiealei
Mass air flow sensor	Amount of intake air		

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater corresponding to the engine speed, amount of intake air and engine coolant temperature.

OPERATION

Engine speed rpm	Heated oxygen sensor 2 heater
Above 3,600	OFF
Below 3,600 rpm after the following conditions are met.	
Engine: After warming up	ON
 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	

CONSULT-II Reference Value in Data Monitor Mode

ABS002ET

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 HTR (B1) HO2S2 HTR (B2)	Engine speed: Above 3,600 rpm	OFF
	Engine speed is below 3,600 rpm after the following conditions are met.	
	- Engine: After warming up	ON
	 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	

On Board Diagnosis Logic

ABS002EU

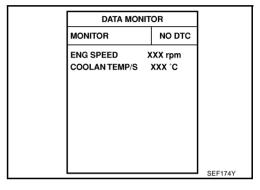
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0037 0037 (Bank 1) P0057	Heated oxygen sensor 2 heater control circuit low	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively low voltage signal is sent to ECM	Harness or connectors (The heated oxygen sensor 2 heater circuit is open or shorted.)
0057 (Bank 2)		through the heated oxygen sensor 2 heater.)	Heater oxygen sensor 2 heater
P0038 0038 (Bank 1)	Heated oxygen sensor 2	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 2 heater)
P0058 0058 (Bank 2)	(an order of the first of the second of the	circuit is shorted.) • Heater oxygen sensor 2 heater	

DTC Confirmation Procedure

ABS002EV

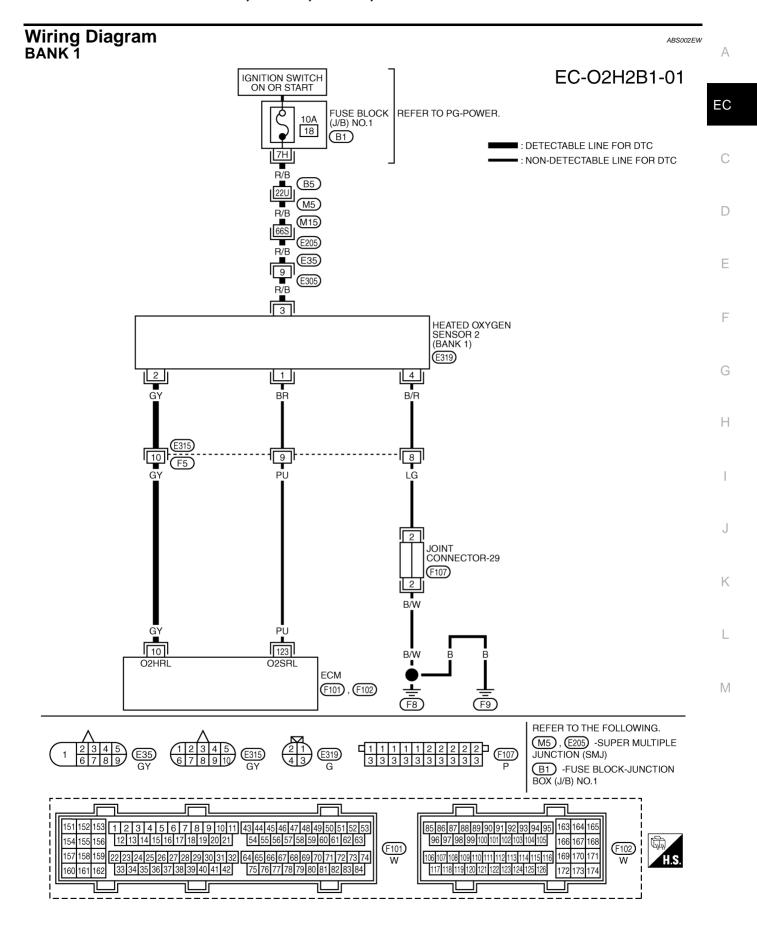
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

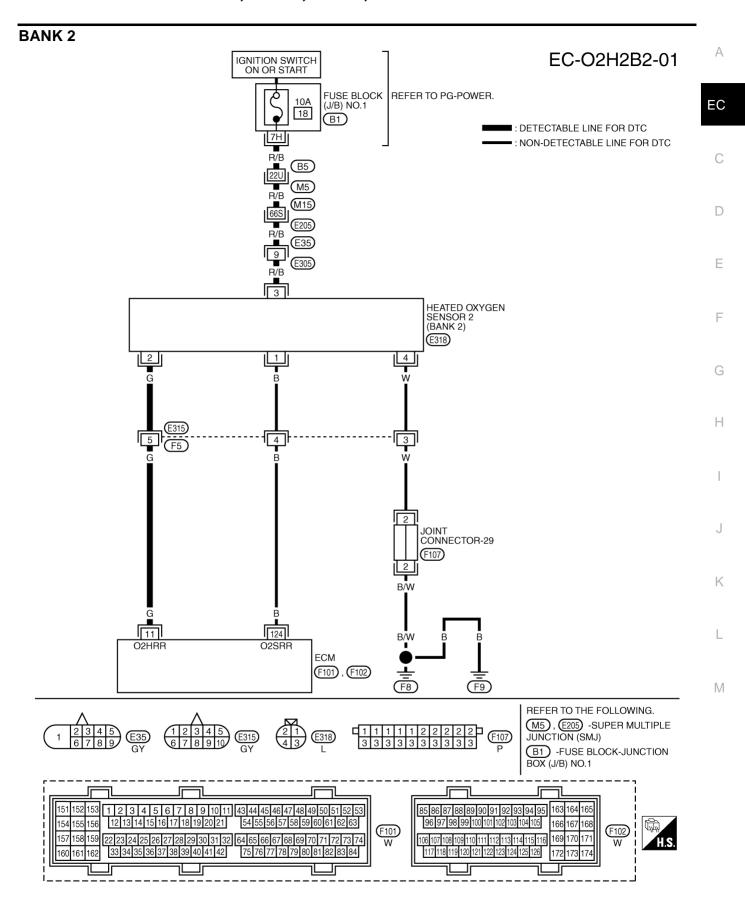
(P) WITH CONSULT-II


- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start the engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute.
- 5. Let engine idle for 1 minute.
- 6. If 1st trip DTC is detected, go to EC-170, "Diagnostic Procedure"

.

WITH GST

- 1. Start the engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute.
- 4. Let engine idle for 1 minute.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute.
- 7. Let engine idle for 1 minute.
- Select "MODE 3" with GST.
- 9. If DTC is detected, go to EC-170, "Diagnostic Procedure".
- When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.


TBWA0269E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
10 GY	GY	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed is below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			 [Ignition switch: ON] ● Engine stopped [Engine is running] ● Engine speed: Above 3,600 rpm. 	BATTERY VOLTAGE (11 - 14V)

TBWA0270E

Specification data are reference values and are measured between each terminal and ground.

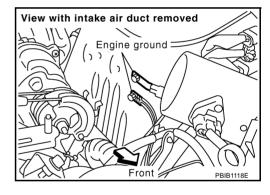
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
11	G	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed is below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - 1.0V
			 [Ignition switch: ON] Engine stopped [Engine is running] Engine speed: Above 3,600 rpm. 	BATTERY VOLTAGE (11 - 14V)

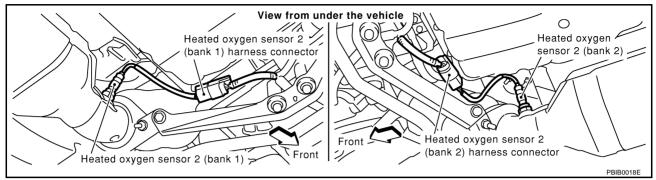
Diagnostic Procedure

ABS002EX


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

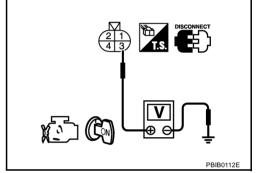
OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

$\overline{2}$. CHECK HO2S2 POWER SUPPLY CIRCUIT

1. Disconnect heated oxygen sensor 2 harness connector.



- 2. Turn ignition switch ON.
- 3. Check voltage between HO2S2 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B5, M5
- Harness connectors M15, E205
- Harness connectors E35, E305
- Fuse block (J/B) No.1 connector B1
- 10A fuse
- Harness for open or short between heated oxygen sensor 2 and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

M

EC

С

D

F

G

Н

17

L

4. CHECK HO2S2 OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dalik
P0037, P0038	10	2	1
P0057, P0058	11	2	2

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E315, F5
- Harness for open or short between heated oxygen sensor 2 and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK HEATED OXYGEN SENSOR 2 HEATER

Refer to EC-173, "Component Inspection".

OK or NG

OK >> GO TO 7.

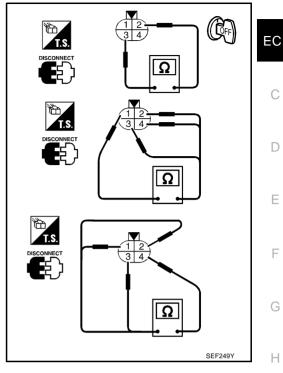
NG >> Replace malfunctioning heated oxygen sensor 2.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2 HEATER


1. Check resistance between HO2S2 terminals as follows.

Terminal No.	Resistance	
2 and 3	5.0 - 7.0 Ω [at 25°C (77°F)]	
1 and 2, 3, 4	$\infty \Omega$	
4 and 1, 2, 3	(Continuity should not exist)	

2. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation **HEATED OXYGEN SENSOR 2**

Refer to EM-22, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

ABS002EZ

ABS002EY

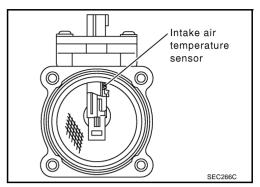
Α

D

F

Н

M


DTC P0101 MAF SENSOR

PFP:22680

Component Description

ABS002F0

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

ARS002F1

Specification data are reference values.

MONITOR ITEM	CO	NDITION	SPECIFICATION	
MAS A/F SE-B1	See EC-128, "TROUBLE DIAGNOSIS - SPECIFICATION VALUE" .			
	Engine: After warming up	Idle	15% - 35%	
CAL/LD VALUE	Selector lever: P or N			
CAL/LD VALUE	Air conditioner switch: OFF	2,500 rpm	10% - 35%	
	No load			
	Engine: After warming up	Idle	3.8 - 5.2 g⋅m/s	
MASS AIRFLOW	Selector lever: P or N			
WASS AIRFLOW	Air conditioner switch: OFF	2,500 rpm	16.0 - 21.5 g⋅m/s	
	No load			

On Board Diagnosis Logic

ABS002F2

NOTE:

If DTC P0101 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to $\underline{\text{EC-531}}$.

This self-diagnosis has the one trip detection logic.

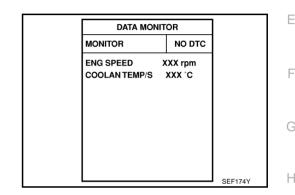
DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P0101 0101		A)	A high voltage from the sensor is sent to ECM under light load driving condition.	Harness or connectors (The sensor circuit is open or shorted.)
	Mass air flow sensor cir-			Mass air flow sensor
	cuit range/performance problem	B)	A low voltage from the sensor is sent to ECM	shorted.)
		,	under heavy load driving condition.	
				Mass air flow sensor

DTC Confirmation Procedure

Perform PROCEDURE FOR MALFUNCTION A first.

If DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


PROCEDURE FOR MALFUNCTION A

NOTE:

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch ON) instead of running engine at idle speed.

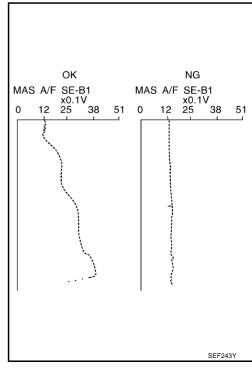
With CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and warm it up to normal operating temperature.
- Run engine for at least 10 seconds at idle speed.
- If DTC is detected, go to EC-178, "Diagnostic Procedure".

With GST

Follow the procedure With CONSULT-II above.

PROCEDURE FOR MALFUNCTION B


CAUTION:

Always drive vehicle at a safe speed.

(A) With CONSULT-II

- 1. Turn ignition switch ON.
- Start engine and warm it up to normal operating temperature. If engine cannot be started, go to EC-178, "Diagnostic Procedure".
- Select "DATA MONITOR" mode with CONSULT-II.
- Check the voltage of "MAS A/F SE-B1" with "DATA MONITOR".
- Increases engine speed to about 4,000 rpm.
- Monitor the linear voltage rise in response to engine speed increases.

If NG, go to EC-178, "Diagnostic Procedure". If OK, go to following step.

Α

EC

D

Н

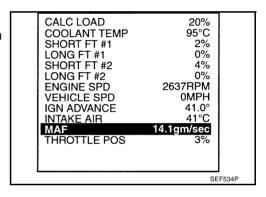
M

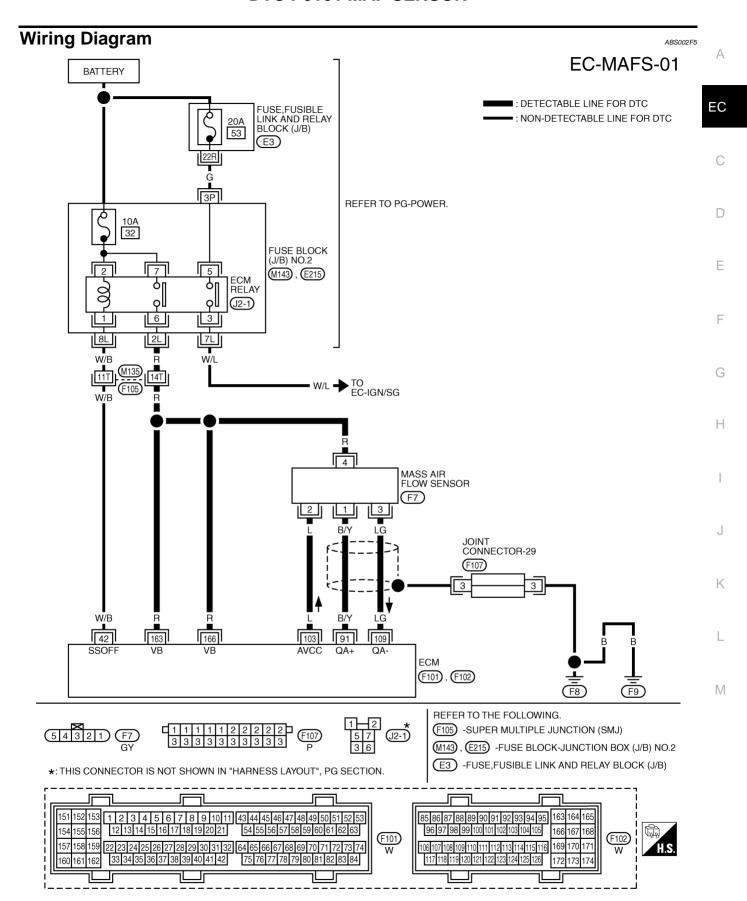
Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm	
THRTL SEN 1	More than 3V	
TUDTI OFNIO	NA (I O)/	
THRTL SEN 2	More than 3V	
Selector lever	Suitable position	
	Canada position	
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.	

MONITOR NO DTC ENG SPEED XXX rpm VHCL SPEED SE XXX km/h THRTL SEN 1 XXX V THRTL SEN 2 XXX V
VHCL SPEED SE XXX km/h THRTL SEN 1 XXX V

8. If DTC is detected, go to EC-178, "Diagnostic Procedure".


Overall Function Check PROCEDURE FOR MALFUNCTION B


ABS002F4

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a DTC might not be confirmed.

With GST

- 1. Start engine and warm it up to normal operating temperature.
- Select "MODE 1" with GST.
- 3. Check the mass air flow sensor signal with "MODE 1".
- 4. Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.
- 5. If NG, go to EC-178, "Diagnostic Procedure".

TBWA0271E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
42	W/B	ECM relay	[Engine is running][Ignition switch: OFF]A few seconds after turning ignition switch OFF	0 - 1.0V
		(Self shut-off)	[Ignition switch: OFF]More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
91	B/Y	Mass air flow sensor	[Engine is running] ■ Warm-up condition ■ Idle speed [Engine is running] ■ Warm-up condition	1.1 - 1.5V 1.7 - 2.4V
103	L	Sensor power supply	Engine speed: 2,500 rpm. [Ignition switch: ON]	Approximately 5V
109	LG	Mass air flow sensor ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V
163 166	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

ABS002F6

1. INSPECTION START

Which malfunction (A or B) is duplicated?

A or B

A >> GO TO 3. B >> GO TO 2.

2. CHECK INTAKE SYSTEM

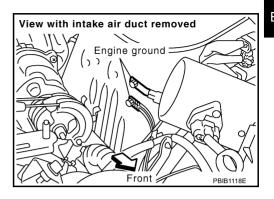
Check the following for connection.

- Air duct
- Vacuum hoses
- Intake air passage between air duct and intake manifold

OK or NG

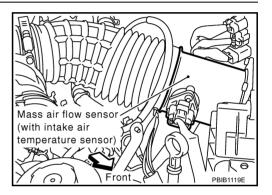
OK >> GO TO 3.

NG >> Reconnect the parts.


$\overline{3}$. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

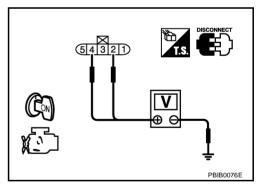
OK or NG


OK >> GO TO 4.

NG >> Repair or replace ground connections.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow (MAF) sensor harness connector.
- 2. Turn ignition switch ON.



Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5V
4	Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Harness for open or short between mass air flow sensor and ECM relay
- Harness for open or short between mass air flow sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

EC

С

D

Е

Н

J

K

L

VI

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 109. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between MAF sensor terminal 1 and ECM terminal 91. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK MASS AIR FLOW SENSOR

Refer to EC-181, "Component Inspection".

OK or NG

OK >> GO TO 9.

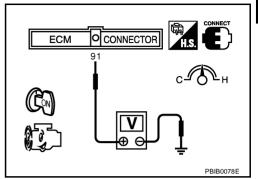
NG >> Replace mass air flow sensor.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0101 MAF SENSOR


Component Inspection MASS AIR FLOW SENSOR

3S002F7

3002F7

- Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 91 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch: ON (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.4
Idle to about 4,000 rpm*	1.1 - 1.5 to Approx. 4.0

- *: Make sure linear voltage rises as engine speed increase to about 4,000 rpm.
- 4. If the voltage is out of specification, proceed the following.
 - Turn ignition switch OFF.
 - Disconnect mass air flow sensor harness connector and reconnect it again.
 - Perform steps 2 and 3 again.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- 6. If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

Refer to EM-16, "AIR CLEANER AND AIR DUCT" .

EC

Α

С

D

Е

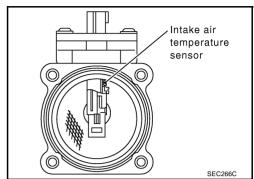
G

Н

ABS002F8

K

L


DTC P0102, P0103 MAF SENSOR

PFP:22680

Component Description

ABS002F9

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

ABS002FA

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAS A/F SE-B1	See EC-128, "TROUBLE DIAGNOSIS - SPECIFICATION VALUE".		
	Engine: After warming up	Idle	15% - 35%
CAL/LD VALUE	Selector lever: P or N		
CAL/LD VALUE	Air conditioner switch: OFF	2,500 rpm	10% - 35%
	No load		
	Engine: After warming up	Idle	3.8 - 5.2 g⋅m/s
MASS AIRFLOW	Selector lever: P or N		
WASS AIRFLOW	Air conditioner switch: OFF	2,500 rpm	16.0 - 21.5 g·m/s
	No load		

On Board Diagnosis Logic

ABS002FB

NOTE:

If DTC P0102, P0103 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to $\frac{EC-531}{EC-531}$.

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0102 0102	Mass air flow sensor circuit low input	An excessively low voltage from the sensor is sent to ECM when engine is running.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor
P0103 0103	Mass air flow sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)Mass air flow sensor

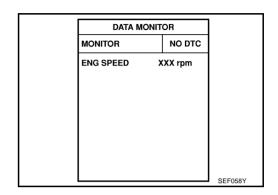
FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

BS002EC

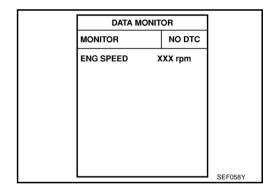

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR DTC P0102

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 5 seconds.
- 4. If DTC is detected, go to EC-185, "Diagnostic Procedure".


With GST

Follow the procedure With CONSULT-II above.

PROCEDURE FOR DTC P0103

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- If DTC is detected, go to <u>EC-185</u>, "<u>Diagnostic Procedure</u>".
 If DTC is not detected, go to next step.
- 5. Start engine and wait at least 5 seconds.
- If DTC is detected, go to <u>EC-185</u>, "<u>Diagnostic Procedure</u>".

With GST

Follow the procedure With CONSULT-II above.

EC

Α

С

Г

Н

J

K

TBWA0271E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
42	42 W/B ECM relay	[Engine is running] [Ignition switch: OFF] ● A few seconds after turning ignition switch OFF	0 - 1.0V	
		(Self shut-off)	[Ignition switch: OFF]More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
91	B/Y	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed[Engine is running]	1.1 - 1.5V
			Warm-up conditionEngine speed: 2,500 rpm.	1.7 - 2.4V
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V
109	LG	Mass air flow sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
163 166	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

1. INSPECTION START

Which malfunction (P0102 or P0103) is duplicated?

P0102 or P0103

P0102 >> GO TO 2.

P0103 >> GO TO 3.

2. CHECK INTAKE SYSTEM

Check the following for connection.

- Air duct
- Vacuum hoses
- Intake air passage between air duct and intake manifold

OK or NG

OK >> GO TO 3.

NG >> Reconnect the parts.

Α

ΞC

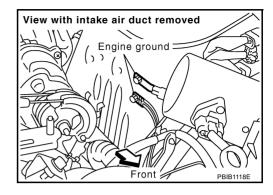
D

F

G

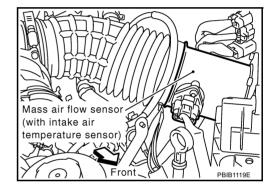
Н

ABS002FE

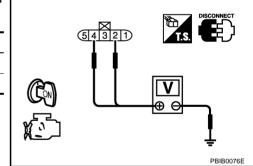

$\overline{3}$. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

OK or NG


OK >> GO TO 4.

NG >> Repair or replace ground connections.


4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow (MAF) sensor harness connector.
- 2. Turn ignition switch ON.

3. Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5V
4	Battery voltage

OK or NG

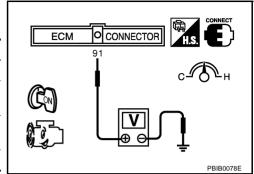
OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Harness for open or short between mass air flow sensor and ECM relay
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT	A
1. Turn ignition switch OFF.	
 Disconnect ECM harness connector. Check harness continuity between MAF sensor terminal 3 and ECM terminal 109. Refer to Wiring Diagram. 	EC
Continuity should exist.	С
 Also check harness for short to ground and short to power. OK or NG 	
OK >> GO TO 7. NG >> Repair open circuit or short to ground or short to power in harness or connectors.	D
7. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	Е
Check harness continuity between MAF sensor terminal 1 and ECM terminal 91. Refer to Wiring Diagram.	
Continuity should exist.	F
2. Also check harness for short to ground and short to power.	
OK or NG	G
OK >> GO TO 8. NG >> Repair open circuit or short to ground or short to power in harness or connectors.	
8. CHECK MASS AIR FLOW SENSOR	Н
Refer to EC-188, "Component Inspection".	
OK or NG OK >> GO TO 9.	
NG >> Replace mass air flow sensor.	J
9. CHECK INTERMITTENT INCIDENT	3
Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	K
INCRECTION END	
>> INSPECTION END	I


Revision: 2004 October **EC-187** 2004 M45

Component Inspection MASS AIR FLOW SENSOR

ABS002FF

- Reconnect harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 91 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch: ON (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.4
Idle to about 4,000 rpm*	1.1 - 1.5 to Approx. 4.0

^{*:} Make sure linear voltage rises as engine speed increases to about 4,000 rpm.

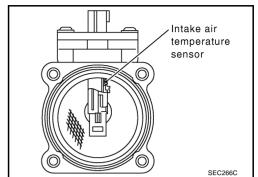
- 4. If the voltage is out of specification, proceed the following.
 - Turn ignition switch OFF.
 - Disconnect mass air flow sensor harness connector and reconnect it again.
 - Perform steps 2 and 3 again.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- 6. If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

ABS002FG

Refer to EM-16, "AIR CLEANER AND AIR DUCT" .

DTC P0112, P0113 IAT SENSOR


Component Description

PFP:22630

ABS002FH

The intake air temperature sensor is built-into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.32	1.9 - 2.1
80 (176)	1.23	0.31 - 0.37

^{*:} This data is reference values and is measured between ECM terminal 99 (Intake air temperature sensor) and ground.

-Acceptable Resistance kn 1.0 0.8 0.4 0.2 0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F) SEF012P

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

ABS002FI

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0112 0112	Intake air temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0113 0113	Intake air temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Intake air temperature sensor

DTC Confirmation Procedure

ABS002E.I

NOTF:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(A) WITH CONSULT-II

- Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- If 1st trip DTC is detected, go to EC-191, "Diagnostic Procedure"

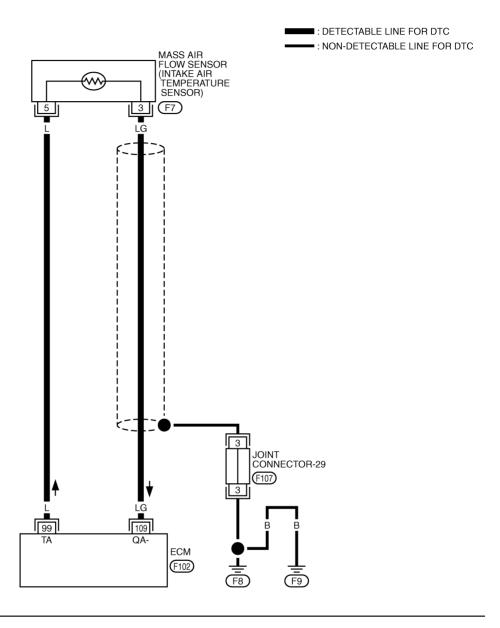
DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

WITH GST

Follow the procedure WITH CONSULT-II above.

EC-189 Revision: 2004 October 2004 M45

EC


Α

Н

Wiring Diagram

ABS002FK

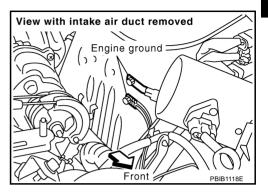
EC-IATS-01

TBWA0272E

DTC P0112, P0113 IAT SENSOR

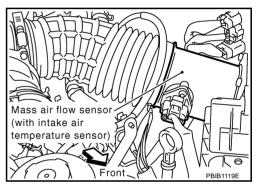
Diagnostic Procedure

1. CHECK GROUND CONNECTIONS


1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

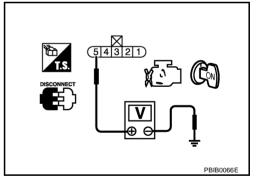
OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow sensor (intake air temperature sensor is built-into) harness connector.
- 2. Turn ignition switch ON.


3. Check voltage between mass air flow sensor terminal 5 and ground.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK INTAKE AIR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between mass air flow sensor terminal 3 and ECM terminal 109. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

ABS002FL

Е

G

Н

Κ

L

DTC P0112, P0113 IAT SENSOR

4. CHECK INTAKE AIR TEMPERATURE SENSOR

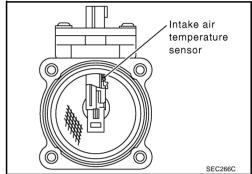
Refer to EC-191, "Diagnostic Procedure".

OK or NG

OK >> GO TO 5.

NG >> Replace mass air flow sensor (with intake air temperature sensor).

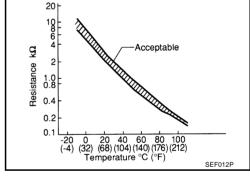
5. CHECK INTERMITTENT INCIDENT


Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection INTAKE AIR TEMPERATURE SENSOR

ABS002FM


1. Check resistance between intake air temperature sensor terminals 3 and 5 under the following conditions.

<Reference data>

Intake air temperature °C (°F)	Resistance $k\Omega$
25 (77)	1.9 - 2.1

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

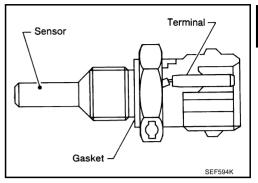
ABS002FN

Removal and Installation MASS AIR FLOW SENSOR

Refer to EM-16, "AIR CLEANER AND AIR DUCT".

DTC P0117, P0118 ECT SENSOR

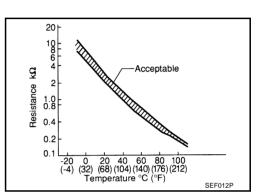
PFP:22630


Component Description

ABS002FO

Α

EC


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference values and is measured between ECM terminal 121 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

ABS002FP

Н

M

These self-diagnoses have the one trip detection logic.

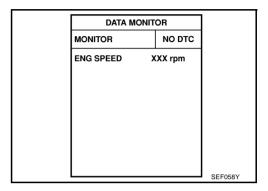
DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P0117 0117	Engine coolant temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0118 0118	Engine coolant temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Engine coolant temperature sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode		
	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch ON or START. CONSULT-II displays the engine coolant temperature decided by ECM.		
	Condition	Engine coolant temperature decided (CONSULT-II display)	
Engine coolant temper-	Just as ignition switch is turned ON or START	40°C (104°F)	
ature sensor circuit	More than approx. 4 minutes after ignition ON or START	80°C (176°F)	
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	
	When the fail-safe system for engine coolant temperate engine is running.	ture sensor is activated, the cooling fan operates while	

DTC Confirmation Procedure


ABS002FO

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If DTC is detected, go to EC-196, "Diagnostic Procedure".

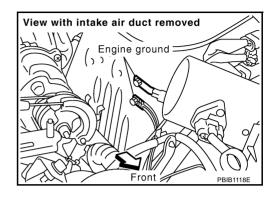
WITH GST

Follow the procedure WITH CONSULT-II above.

Wiring Diagram Α EC-ECTS-01 : DETECTABLE LINE FOR DTC EC : NON-DETECTABLE LINE FOR DTC ENGINE COOLANT TEMPERATURE SENSOR <₩) С (F262) D Е G Н JOINT CONNECTOR-30 (F108) 89 ECM (F102) M 85 86 87 88 89 90 91 92 93 94 95 1 2 F24 SB 1111111222222 F108 L F102 W 169 170 171

TBWA0273E

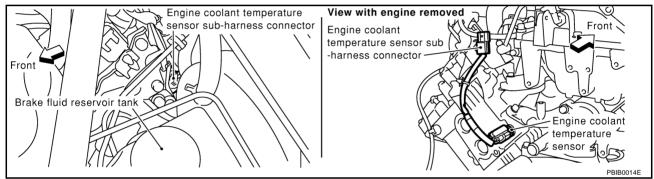
Diagnostic Procedure


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

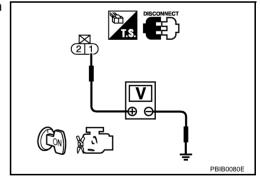
OK >> GO TO 2.


NG >> Repair or replace ground connections.

ABS002FS

2. CHECK ECT SENSOR POWER SUPPLY CIRCUIT

1. Disconnect engine coolant temperature (ECT) sensor harness connector.



- Turn ignition switch ON.
- 3. Check voltage between ECT sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F261, F24
- Harness for open and short between ECT sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ECT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECT sensor terminal 2 and ECM terminal 89. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F261, F24
- Joint connector-30
- Harness for open and short between ECT sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-197, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace engine coolant temperature sensor.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

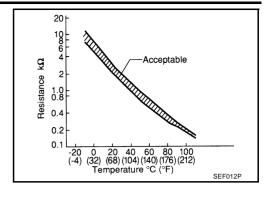
EC

D

F

_

П


J

ABS002FT

N /

<reference data=""></reference>	
Engine coolant temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

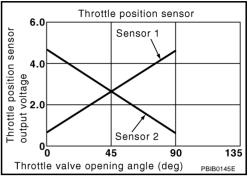
^{2.} If NG, replace engine coolant temperature sensor.

ABS002FU

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to EM-65, "CYLINDER HEAD".

DTC P0122, P0123 TP SENSOR


PFP:16119

Component Description

ABS002FV

Electric throttle control actuator consists of throttle control motor, accelerator pedal position sensor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

ABS002FW

Specification data are reference values.

MONITOR ITEM CONI		IDITION	SPECIFICATION
THRTL SEN 1 THRTL SEN 2*	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
THINTE OLIV 2	Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

ABS002FX

NOTE

If DTC P0122, P0123 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to $\frac{\text{EC-531}}{\text{CC-531}}$.

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0122 0122	Throttle position sensor 2 circuit low input	An excessively low voltage from the TP sensor 2 is sent to ECM.	(The TP sensor 2 circuit is open or
P0123 0123	Throttle position sensor 2 circuit high input	An excessively high voltage from the TP sensor 2 is sent to ECM.	shorted.) • Electric throttle control actuator (TP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

EC

Α

С

- F

G

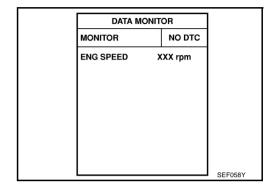
J

K

DTC Confirmation Procedure

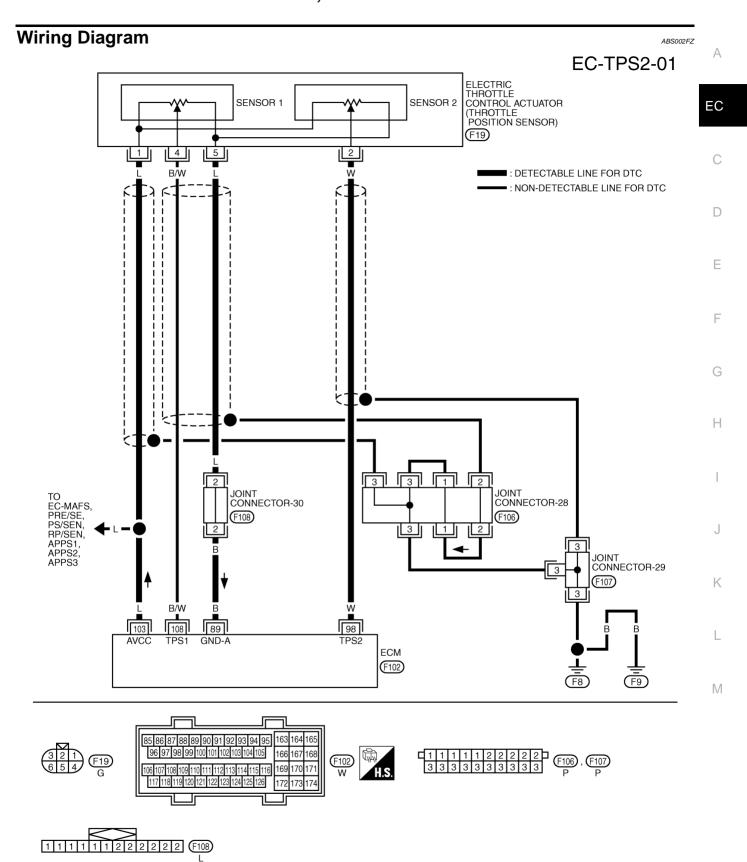
ABS002FY

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.


(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-202, "Diagnostic Procedure" .

WITH GST

Follow the procedure "WITH CONSULT-II" above.

TBWA0282E

Specification data are reference values and are measured between each terminal and ground.

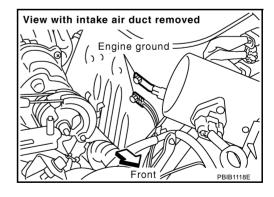
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
89	В	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
98		Throttle position copper 2	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully released 	Less than 4.75V
90	W	Throttle position sensor 2	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	More than 0.36V
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V
108	B/W	Throttle position sensor 1	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully released	More than 0.36V
			 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	Less than 4.75V

Diagnostic Procedure

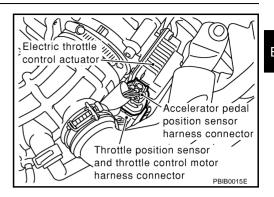
1. CHECK GROUND CONNECTIONS


1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

OK >> GO TO 2.

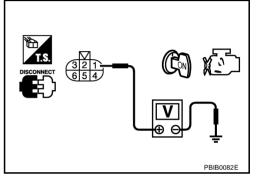

NG >> Repair or replace ground connections.

ABS002G0

$\overline{2}$. CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch: ON.

Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK THROTTLE POSITION SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch: OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 5 and ECM terminal 89. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. >> GO TO 4. NG

4. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-30
- Harness for open or short between electric throttle control actuator and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK THROTTLE POSITION SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 98 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC-203 Revision: 2004 October 2004 M45

EC

Н

6. CHECK THROTTLE POSITION SENSOR

Refer to EC-204, "Component Inspection".

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

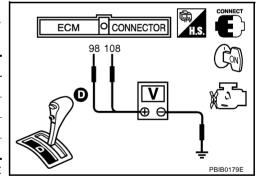
7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

8. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

ABS002G1

- Reconnect all harness connectors disconnected.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Turn ignition switch ON.
- 5. Set selector lever to D position.
- Check voltage between ECM terminals 108 (TP sensor 1signal), 98 (TP sensor 2signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
108	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
98	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- 7. If NG, replace electric throttle control actuator and go to the next step.
- 8. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 9. Perform EC-44, "Throttle Valve Closed Position Learning".
- 10. Perform EC-44, "Idle Air Volume Learning".

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

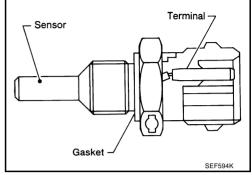
Refer to EM-18, "INTAKE MANIFOLD".

ABS002G2

DTC P0125 ECT SENSOR

DTC P0125 ECT SENSOR

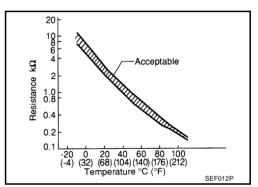
PFP:22630


ABS002G3

Component Description

NOTE:

If DTC P0125 is displayed with P0117 or P0118, first perform the trouble diagnosis for DTC P0117 or P0118. Refer to EC-193, "DTC P0117, P0118 ECT SENSOR".


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference values and is measured between ECM terminal 121 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0125 0125	Insufficient engine coolant temperature for closed loop fuel control	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

EC

Α

F

. . .

Н

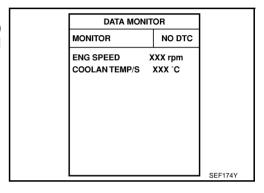
ABS002G4

DTC P0125 ECT SENSOR

DTC Confirmation Procedure

ABS002G5

CAUTION:


Be careful not to overheat engine.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

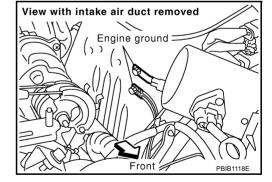
- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.
- Start engine and run it for 65 minutes at idle speed.
 If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- 5. If DTC is detected, go to EC-206, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

ABS002G7


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-207, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace engine coolant temperature sensor.

DTC P0125 ECT SENSOR

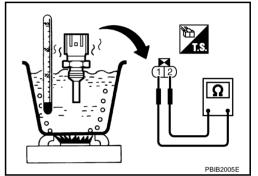
$\overline{3}$. CHECK THERMOSTAT OPERATION

When the engine is under cold [lower than 70°C (158°F)] condition, grasp lower radiator hose and confirm the engine coolant does not flow.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace thermostat. Refer to CO-24, "THERMOSTAT AND WATER CONTROL VALVE" .


4. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . Refer to EC-195, "Wiring Diagram" .

>> INSPECTION END

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Engine coolant temperature °C (°F)	Resistance kΩ
-10 (14)	7.0 - 11.4
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

ABS002G9

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to EM-65, "CYLINDER HEAD".

EC

D

AB\$002G8

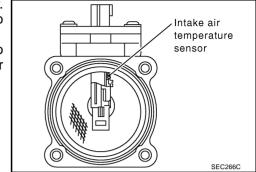
G

Н

J

K

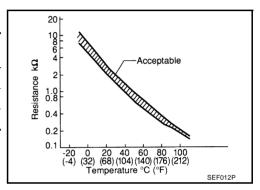
DTC P0127 IAT SENSOR


PFP:22630

Component Description

ABS002GA

The intake air temperature sensor is built into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the ECM.


The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.43	7.9 - 9.3
25 (77)	3.32	1.9 - 2.1
80 (176)	1.23	0.31 - 0.37

^{*:} This data is reference values and is measured between ECM terminal 99 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

ABS002GB

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0127 0127	Intake air temperature too high	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Harness or connectors (The sensor circuit is open or shorted)Intake air temperature sensor

DTC Confirmation Procedure

ABS002GC

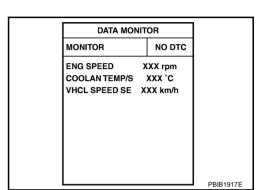
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:


This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-II

- 1. Wait until engine coolant temperature is less than 90°C (194°F)
- a. Turn ignition switch ON.
- b. Select "DATA MONITOR" mode with CONSULT-II.
- c. Check the engine coolant temperature.
- If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch OFF and cool down engine.
 - Perform the following steps before engine coolant temperature reaches 90°C (194°F).
- 2. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine.
- 5. Hold vehicle speed at more than 71 km/h (44 MPH) for 100 consecutive seconds.
- 6. If 1st trip DTC is detected, go to EC-210, "Diagnostic Procedure".

WITH GST

Follow the procedure WITH CONSULT-II above.

EC

Α

Е

D

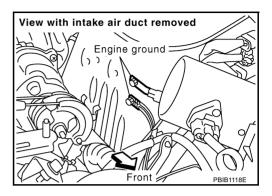
Н

Κ

L

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS


1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-210, "Component Inspection".

OK or NG

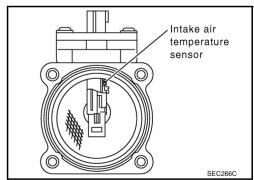
OK >> GO TO 3.

NG >> Replace mass air flow sensor (with intake air temperature sensor).

3. CHECK INTERMITTENT INCIDENT

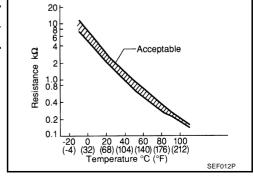
Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

Refer to EC-190, "Wiring Diagram".


>> INSPECTION END

Component Inspection INTAKE AIR TEMPERATURE SENSOR

1. Check resistance between intake air temperature sensor terminals 3 and 5 under the following conditions.



ABS002GE

Intake air temperature °C (°F)	Resistance kΩ
25 (77)	1.9 - 2.1

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

Removal and Installation MASS AIR FLOW SENSOR

ABS002GG

Refer to EM-16, "AIR CLEANER AND AIR DUCT".

EC

Α

С

D

Е

F

G

Н

J

Κ

.

DTC P0128 THERMOSTAT FUNCTION

DTC P0128 THERMOSTAT FUNCTION

PFP:21200

On Board Diagnosis Logic

ABS002GH

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

This is due to a leak in the seal or the thermostat stuck open.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0128 0128	Thermostat function	The engine coolant temperature does not reach to specified temperature even though the engine has run long enough.	 Thermostat Leakage from sealing portion of thermostat Engine coolant temperature sensor

DTC Confirmation Procedure

ARS002GI

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform at ambient temperature of −10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of −10°C (14°F) to 60°C (140°F).

(I) WITH CONSULT-II

- Replace thermostat with new one. Refer to <u>CO-24</u>, "<u>THERMOSTAT AND WATER CONTROL VALVE</u>".
 Use only a genuine NISSAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.
- 2. Turn ignition switch ON.
- Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- Check that the "COOLAN TEMP/S" is above 60°C (140°F).
 If it is below 60°C (140°F), go to following step.
 If it is above 60°C (140°F), cool down the engine to less than 60°C (140°F), then retry from step 1.
- Drive vehicle for 10 consecutive minutes under the following conditions.

l L	DATA MONITOR		
	MONITOR	NO DTC	
	ENG SPEED COOLAN TEMP/S VHCL SPEED SE		
			PBIB1917E

DATA MONITOR

VHCL SPEED SE 80 - 120 km/h (50 - 75 MPH)

If 1st trip DTC is detected, go to EC-212, "Diagnostic Procedure".

WITH GST

1. Follow the procedure WITH CONSULT-II above.

Diagnostic Procedure

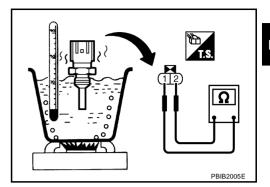
ABS002GJ

1. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-213, "Component Inspection".

OK or NG

OK >> INSPECTION END


NG >> Replace engine coolant temperature sensor.

DTC P0128 THERMOSTAT FUNCTION

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

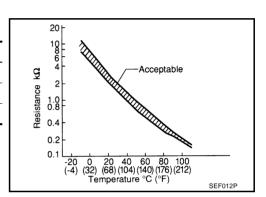
Check resistance as shown in the figure.

ABS002GK

EC

Α

С


D

Е

<Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.0
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

ABS002GL

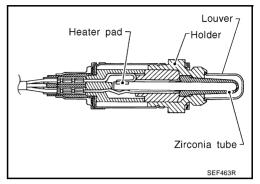
Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

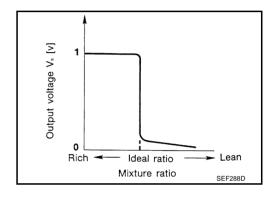
Refer to EM-65, "CYLINDER HEAD".

Н

K

L


DTC P0132, P0152 HO2S1


PFP:22690

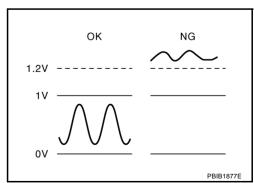
Component Description

ABS002GM

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1 to 0V.

CONSULT-II Reference Value in Data Monitor Mode

ABS002GN


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

On Board Diagnosis Logic

ABS002GO

To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 output is not inordinately high.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0132 0132 (Bank 1) P0152	Heated oxygen sensor 1 circuit high voltage	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 1
0152 (Bank 2)			• Hoated oxygen sensor 1

DTC P0132, P0152 HO2S1

DTC Confirmation Procedure

SUUSED

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(I) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- Restart engine and let it idle for 2 minutes.
- 6. If 1st trip DTC is detected, go to EC-219, "Diagnostic Procedure"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm

COOLAN TEMP/S XXX C

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Restart engine and let it idle for 2 minutes.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Restart engine and let it idle for 2 minutes.
- 6. Select "MODE 3" with GST.
- 7. If 1st trip DTC is detected, go to EC-219, "Diagnostic Procedure".
- When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

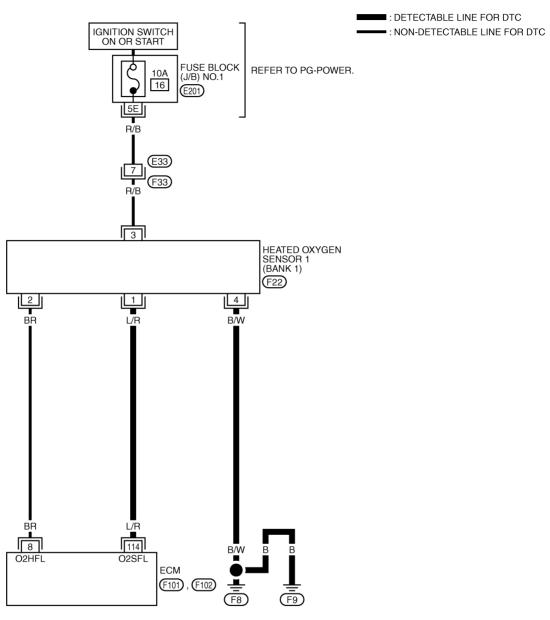
EC

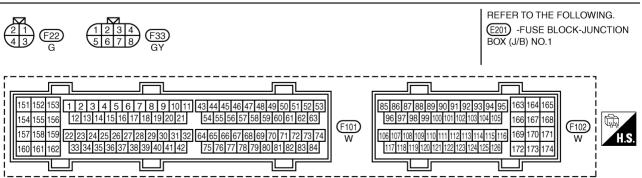
Α

С

D

Н


v


L

Wiring Diagram BANK 1

BS002G0

EC-02S1B1-01

TBWA0274E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
114	L/R	Heated oxygen sensor 1 (bank 1)	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

EC

Α

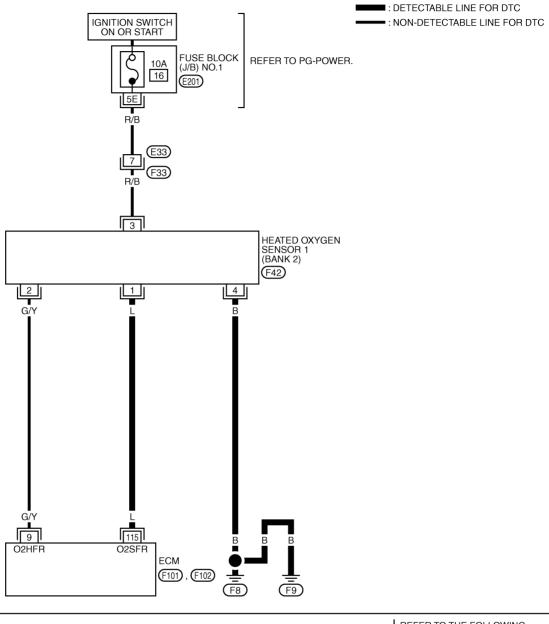
С

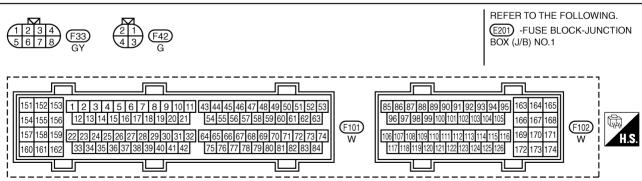
Е

D

F

G


Н


K

L

BANK 2

EC-O2S1B2-01

TBWA0275E

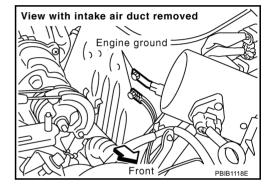
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

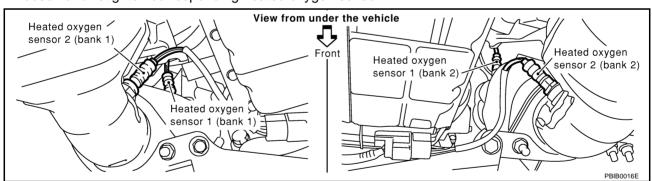
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
115	L	Heated oxygen sensor 1 (bank 2)	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

Diagnostic Procedure


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. RETIGHTEN HEATED OXYGEN SENSOR 1

1. Loosen and retighten corresponding heated oxygen sensor 1.

Tightening torque: 40 - 50 N·m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

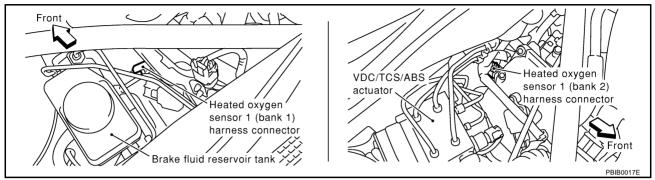
>> GO TO 3.

EC

D

F

Α


ABS002GR

Н

L

$\overline{3}$. CHECK HO2S1 GROUND CIRCUIT FOR OPEN AND SHORT

Disconnect heated oxygen sensor 1 harness connector.

Check harness continuity between HO2S1 terminal 4 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connector.

4. CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Terminals		Bank
ыс	ECM	Sensor	Dank
P0132	114	1	1
P0152	115	1	2

Continuity should exist.

3. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dank
P0132	114	1	1
P0152	115	1	2

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Water should not exist. OK or NG OK >> GO TO 6. NG >> Repair or replace harness or connectors.	
OK >> GO TO 6.	<u> </u>
NO >> Repair of replace flattless of confidences.	
6. CHECK HEATED OXYGEN SENSOR 1	
Refer to EC-222, "Component Inspection".	
<u>OK or NG</u> OK >> GO TO 7.	
NG >> Replace malfunctioning heated oxygen sensor 1.	
7. CHECK INTERMITTENT INCIDENT	
Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
INODE OTION END	
>> INSPECTION END	

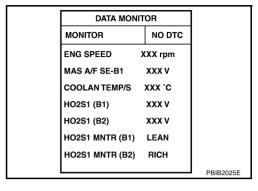
D

Е

F

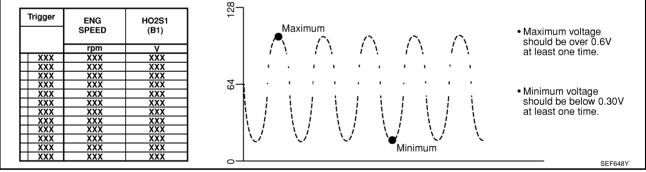
G

Н


Κ

Component Inspection HEATED OXYGEN SENSOR 1

ABS002GS


(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

- 6. Check the following.
 - "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Bank 1	cycle	1 2	3 4 5
HO2S1	MNTR (B1)	R-L-R-L-R	-L-R-L-R
Bank 2			
	cycle	1 2	3 4 5
HO2S1	MNTR (B2)	R-L-R-L-R	-L-R-L-R
R means MNTR (B1	HO2S1)/(B2) indica	ates RICH	
L means I MNTR (B1	HO2S1)/(B2) indica	ates LEAN	SEF647Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 114 [HO2S1 (B1) signal] or 115 [HO2S1 (B2) signal] and ground.

- Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least 1 time.
 - The minimum voltage is below 0.3V at least 1 time.
 - The voltage never exceeds 1.0V.

```
1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V
```

ECM O CONNECTOR C H 114 115 114: Bank 1 115: Bank 2 PBIB0064E

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

Refer to EM-22, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

ABS002GT

EC

Α

С

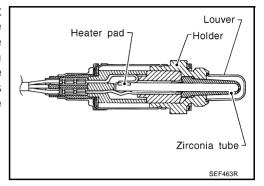
D

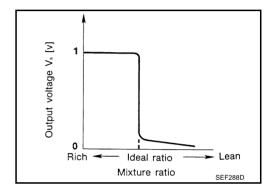
2GT

G

Н

K


L


PFP:22690

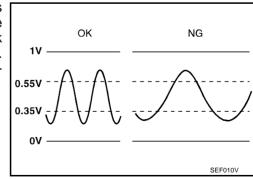
Component Description

ABS002GU

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1 to 0V.

CONSULT-II Reference Value in Data Monitor Mode

ABS002GV


Specification data are reference values.

MONITOR ITEM		CONDITION	SPECIFICATION
HO2S1 (B1) HO2S1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

On Board Diagnosis Logic

ABS002GW

To judge the malfunction of heated oxygen sensor 1, this diagnosis measures response time of heated oxygen sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 temperature index. Judgment is based on whether the compensated time (heated oxygen sensor 1 cycling time index) is inordinately long or not.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	A
P0133 0133			Harness or connectors (The sensor circuit is open or shorted)	
P0153 0153 (Bank 2)	Heated oxygen sensor 1 circuit slow response		Heated oxygen sensor 1	EC
			Fuel pressure	
			Fuel injector	
			Intake air leaks	С
			Exhaust gas leaks	
			PCV valve	
			Mass air flow sensor	D

DTC Confirmation Procedure

ABS002GX

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(A) WITH CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 10 seconds.
- Turn ignition switch ON and select "HO2S1 (B1) P0133" or "HO2S1 (B2) P0153" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

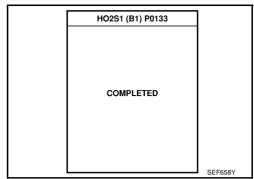
Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 5.

HO2S1 (B1) P0	133	
OUT OF CONDI		
MONITOR		
ENG SPEED XXX rpm		
B/FUEL SCHDL XXX msec		
COOLAN TEMP/S XXX °C		
VHCL SPEED SEN	SEF338Z	
		SEFSSBZ

6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 40 to 50 seconds.)

ENG SPEED	1,350 - 2,400 rpm
VHCL SPEED SE	More than 80 km/h (50 MPH)
B/FUEL SCHDL	1.6 - 12.0 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.


		,
HO2S1 (B1) P0	133	
TESTING		
MONITOR		
ENG SPEED XXX rpm		
B/FUEL SCHDL XXX msec		
COOLAN TEMP/S XXX °C		
VHCL SPEED SEN	XXX km/h	055007
		SEF339Z

EC-225 Revision: 2004 October 2004 M45

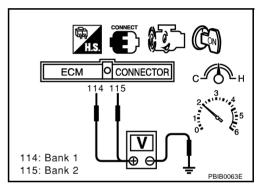
F

Н

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to <u>EC-230, "Diagnostic</u> Procedure".

Overall Function Check

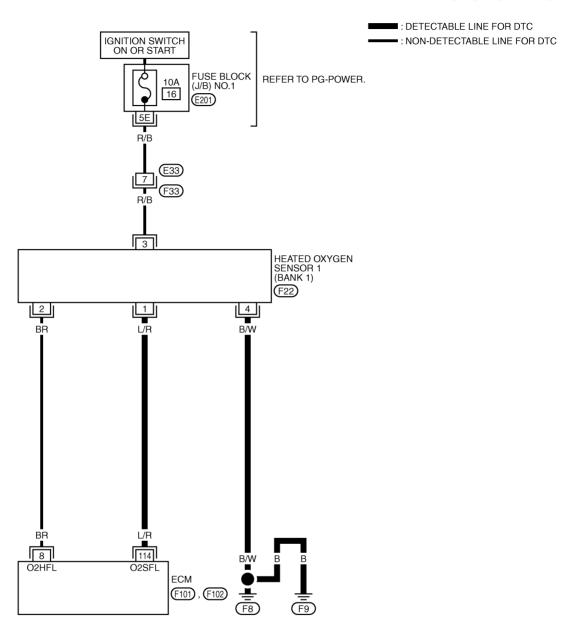
ABCOORCY

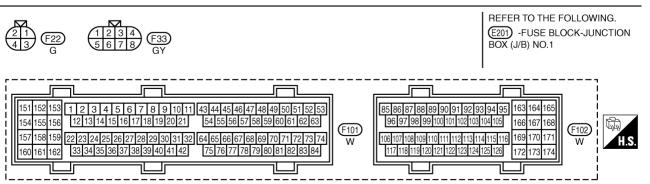

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 114 [HO2S1(B1) signal] or 115 [HO2S1(B2) signal] and ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.

 $\begin{array}{lll} \mbox{1 time:} & \mbox{0 - 0.3V} \rightarrow \mbox{0.6 - 1.0V} \rightarrow \mbox{0 - 0.3V} \\ \mbox{2 times:} & \mbox{0 - 0.3V} \rightarrow \mbox{0.6 - 1.0V} \rightarrow \mbox{0 - 0.3V} \rightarrow \mbox{0.6 - 1.0V} \\ & \mbox{\rightarrow 0 - 0.3V} \\ \end{array}$


4. If NG, go to EC-230, "Diagnostic Procedure".



Wiring Diagram BANK 1

ABS002GZ

EC-02S1B1-01

TBWA0274E

EC

Α

С

D

Е

F

G

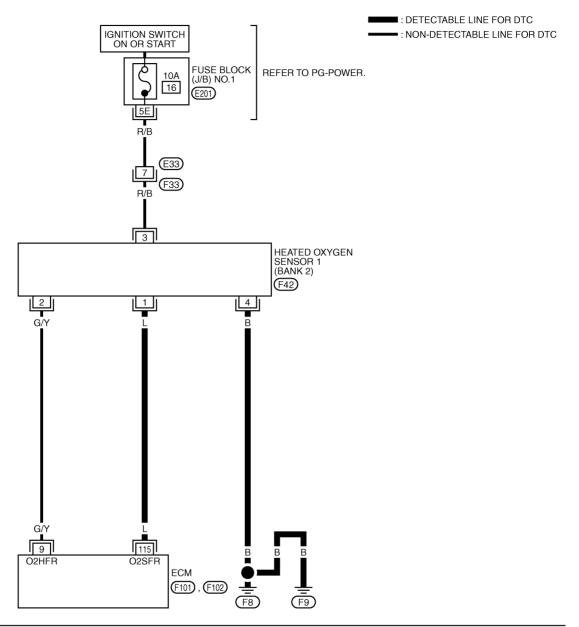
Н

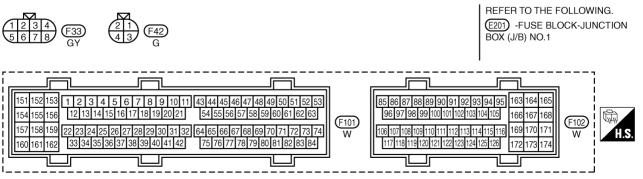
J

<

l

Specification data are reference values and are measured between each terminal and ground.


CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
114	L/R	Heated oxygen sensor 1 (bank 1)	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

BANK 2

EC-O2S1B2-01

TBWA0275E

EC

Α

С

D

Е

F

G

Н

I

J

<

Specification data are reference values and are measured between each terminal and ground.

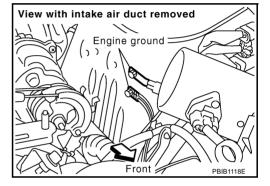
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
115	L	Heated oxygen sensor 1 (bank 2)	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

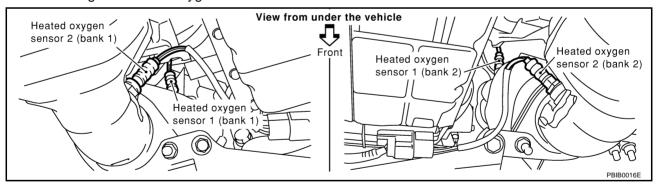
Diagnostic Procedure

ABS002H0


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

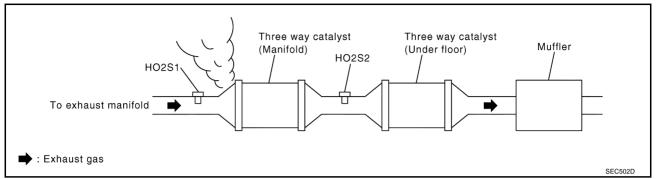
OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten heated oxygen sensor 1.



Tightening torque: 40 - 50 N·m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

>> GO TO 3.

3. CHECK FOR EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before three way catalyst (Manifold).

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK FOR INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace.

EC

С

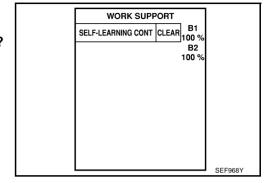
D

Е

F

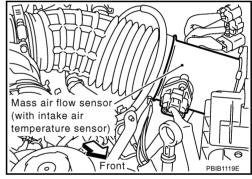
G

Н


K

L

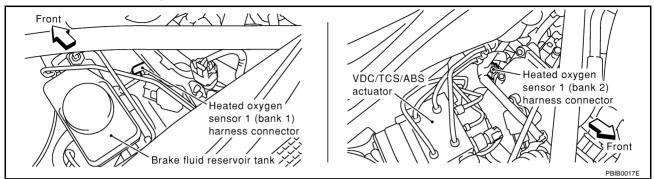
5. CLEAR THE SELF-LEARNING DATA


(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-62</u>, "<u>HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected?
 Is it difficult to start engine?


Yes or No

Yes >> Perform trouble diagnosis for DTC P0171, P0174 or DTC P0172, P0175 (Refer to EC-266 or EC-275).

No >> GO TO 6.

6. CHECK HO2S1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 1 harness connector.

Check harness continuity between HO2S1 terminal 4 and ground. 3. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to power in harness or connectors.

7. CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	ninals	Bank
DIC	ECM	Sensor	Dank
P0133	114	1	1
P0153	115	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dank
P0133	114	1	1
P0153	115	1	2

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors. EC

D

F

Н

8. CHECK MASS AIR FLOW SENSOR

Refer to EC-181, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK PCV VALVE

Refer to EC-704, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace PCV valve.

10. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-234, "Component Inspection".

OK or NG

OK >> GO TO 11.

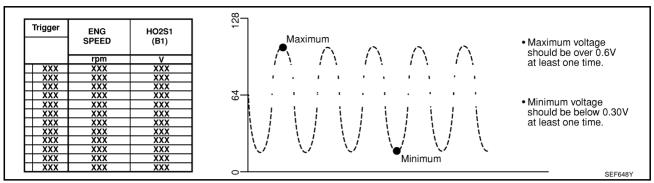
NG >> Replace malfunctioning heated oxygen sensor 1.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

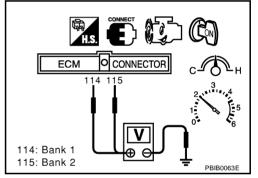

ABS002H1

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- 3. Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

DATA MON	DATA MONITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
COOLAN TEMP/S	xxx °c	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	XXX V	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	RICH	
		PBIB2025E

- 6. Check the following.
 - "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 114 [HO2S1 (B1) signal] or 115 [HO2S1 (B2) signal] and ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least 1 time.
 - The minimum voltage is below 0.3V at least 1 time.
 - The voltage never exceeds 1.0V.

1 time: $0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V$ 2 times: 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.3V \rightarrow 0.6 - 1.0V \rightarrow 0 -0.3V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation **HEATED OXYGEN SENSOR 1**

Refer to EM-22, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

ABS002H2

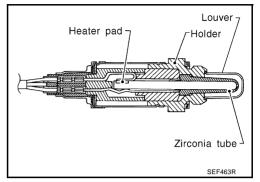
Α

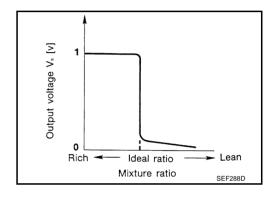
EC

F

Н

M


Revision: 2004 October


PFP:22690

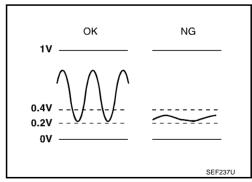
Component Description

ABS002H3

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1 to 0V.

CONSULT-II Reference Value in Data Monitor Mode

ABS002H4


Specification data are reference values.

MONITOR ITEM CONDITION		SPECIFICATION	
HO2S1 (B1) HO2S1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

On Board Diagnosis Logic

ABS002H5

Under the condition in which the heated oxygen sensor 1 signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0134 0134 (Bank 1) P0154 0154 (Bank 2)	Heated oxygen sensor 1 circuit no activity detected	The voltage from the sensor is constantly approx. 0.3V.	Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 1

DTC Confirmation Procedure

BSUUSHE

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(A) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "HO2S1 (B1) P0134" or "HO2S1 (B2) P0154" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START".
- 4. Let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 4.

HO2S1 (B1) P0		
OUT OF CONDI		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S XXX °C		
VHCL SPEED SEN	XXX km/h	PBIB0544E

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)

ENG SPEED	1,100 - 3,000 rpm
VHCL SPEED SE	More than 64 km/h (40 MPH)
B/FUEL SCHDL	1.6 - 12.0 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from L step 2.

6. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-242, "Diagnostic Procedure".

HO2S1 (B1) P0	134	
TESTING		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S XXX °C		
VHCL SPEED SEN	XXX km/h	PBIB0545E
		F DID0343E

HO2S1 (B1) P0134	
COMPLETED	
	SEC750C

EC

C

Α

F

 \Box

F

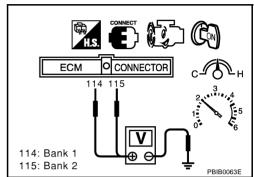
G

Н

-

r\

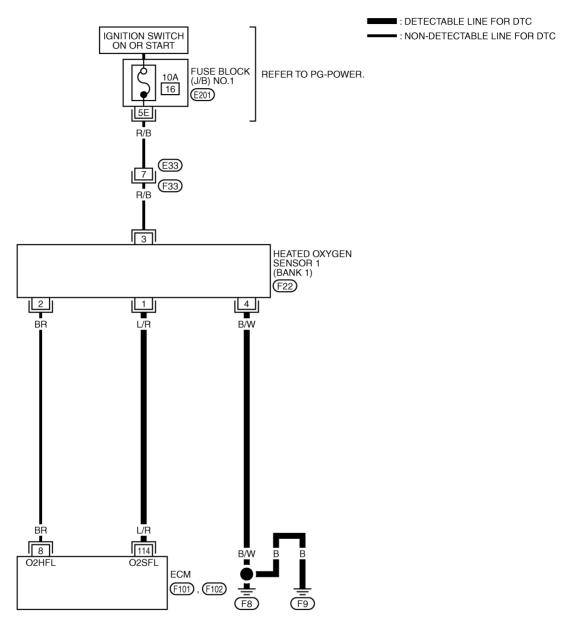
L

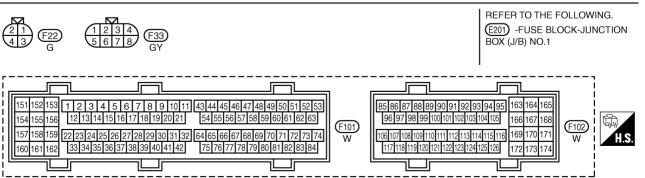

Overall Function Check

ARSON2H

Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST


- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 114 [HO2S1 (B1) signal] or 115 [HO2S1 (B2) signal] and ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 to 0.4V.
- 4. If NG, go to EC-242, "Diagnostic Procedure".



Wiring Diagram BANK 1

RS002H8

EC-02S1B1-01

TBWA0274E

EC

Α

С

D

Е

F

G

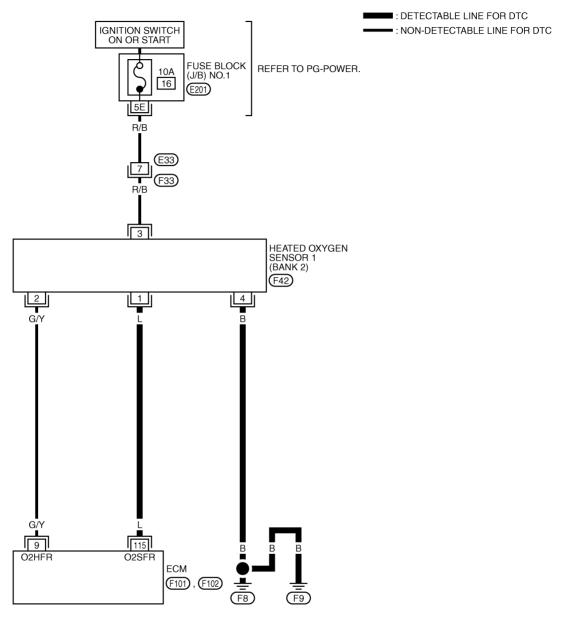
Н

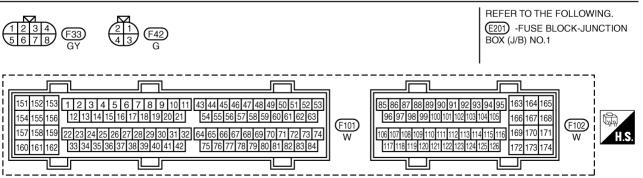
J

<

l

Specification data are reference values and are measured between each terminal and ground.


CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
114	L/R	Heated oxygen sensor 1 (bank 1)	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

BANK 2

EC-O2S1B2-01

TBWA0275E

EC

Α

D

С

Е

F

G

Н

J

<

l

Specification data are reference values and are measured between each terminal and ground.

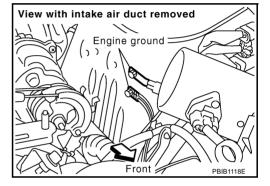
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
115	L	Heated oxygen sensor 1 (bank 2)	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm.	0 - Approximately 1.0V (Periodically change)

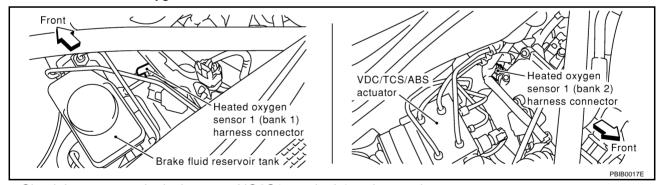
Diagnostic Procedure

ABS002H9


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK HO2S1 GROUND CIRCUIT FOR OPEN AND SHORT

Disconnect heated oxygen sensor 1 harness connector.

Check harness continuity between HO2S1 terminal 4 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to power in harness or connectors.

$\overline{3}$. CHECK HO2S1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dank
P0134	114	1	1
P0154	115	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dank
P0134	114	1	1
P0154	115	1	2

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-243, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace malfunctioning heated oxygen sensor 1.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection **HEATED OXYGEN SENSOR 1**

With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- Hold engine speed at 2,000 rpm under no load during the following steps.
- Touch "RECORD" on CONSULT-II screen. 5.

DATA MON		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
COOLAN TEMP/S	XXX °C	
HO2S1 (B1)	XXX V	
HO2S1 (B2)	xxx v	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	RICH	
		PBIB2025E

EC

 D

F

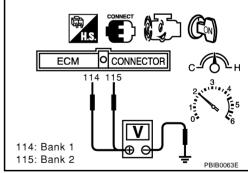
Н

M

ABS002HA

- Check the following.
 - "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Bank 1 cycle 1 2 3	1 5
HO2S1 MNTR (B1) R-L-R-L-R-L-	-R-L-R-L-R
Bank 2	
cycle 1 2 3	4 5
HO2S1 MNTR (B2) R-L-R-L-R-L	-R-L-R-L-R
R means HO2S1	
MNTR (B1)/(B2) indicates RICH	
L means HO2S1	
MNTR (B1)/(B2) indicates LEAN	
mitti (Bi)/(BE) malaates EE/iit	SEF647Y


Trigger	ENG	HO2S1	128]							
	SPEED	(B1)		,	Maximu ●.		<i>(</i>),	\sim	,	``	 Maximum voltage should be over 0.6V
1 1	rpm	V		l /	\ !	` <u>`</u>	/ \	/ / \	· /	Ì	at least one time.
XXX	XXX	XXX	1	l '	. ,	•		•		•	at least one time.
XXX	XXX	XXX			i 1	1		1	1 !	1	
XXX	XXX	XXX									
XXX	XXX	XXX	1 24-		1 :	1				•	
XXX	XXX	XXX]	l .							 Minimum voltage
XXX	XXX	XXX		i	i ;	į	1 1	i	1 /	!	should be below 0.30V
XXX	XXX	XXX		\ i	\ i	1	1 \	į	1 1	i	at least one time.
XXX	XXX	XXX		l\	\ !	i	! i	- !	1 /	ì	
XXX	XXX	XXX		\mathbb{N}/I	1. /	,	<i>;</i>	\ <i>i</i>	\ /	'	
XXX	XXX	XXX]	\ ./	V	_/		`₩	V	`	
XXX	XXX	XXX]					Minim	num		
XXX	XXX	XXX]								
	•		- 0-		· ·			·		· ·	SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 114 [HO2S1 (B1) signal] or 115 [HO2S1 (B2) signal] and ground.
- 3. Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least 1 time.
 - The minimum voltage is below 0.3V at least 1 time.
 - The voltage never exceeds 1.0V.
 - 1 time: 0 0.3V \to 0.6 1.0V \to 0 0.3V 2 times: 0 0.3V \to 0.6 1.0V \to 0 0.3V \to 0.6 1.0V \to 0 0.3V

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

ABS002HB

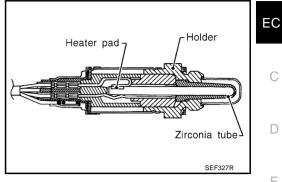
Refer to EM-22, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

DTC P0138, P0158 HO2S2

PFP:226A0

Component Description

ABS002HC


Α

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

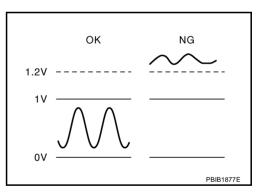
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

ABS002HD

Specification data are reference values.


MONITOR ITEM	CONDI	SPECIFICATION		
HO2S2 (B1) HO2S2 (B2)	Warm-up condition After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle up to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Warm-up condition After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle up to 3,000 rpm quickly.	LEAN ←→ RICH	

On Board Diagnosis Logic

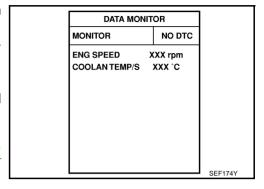
ABS002HF

Н

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the voltage is unusually high during the various driving condition such as fuel-cut.

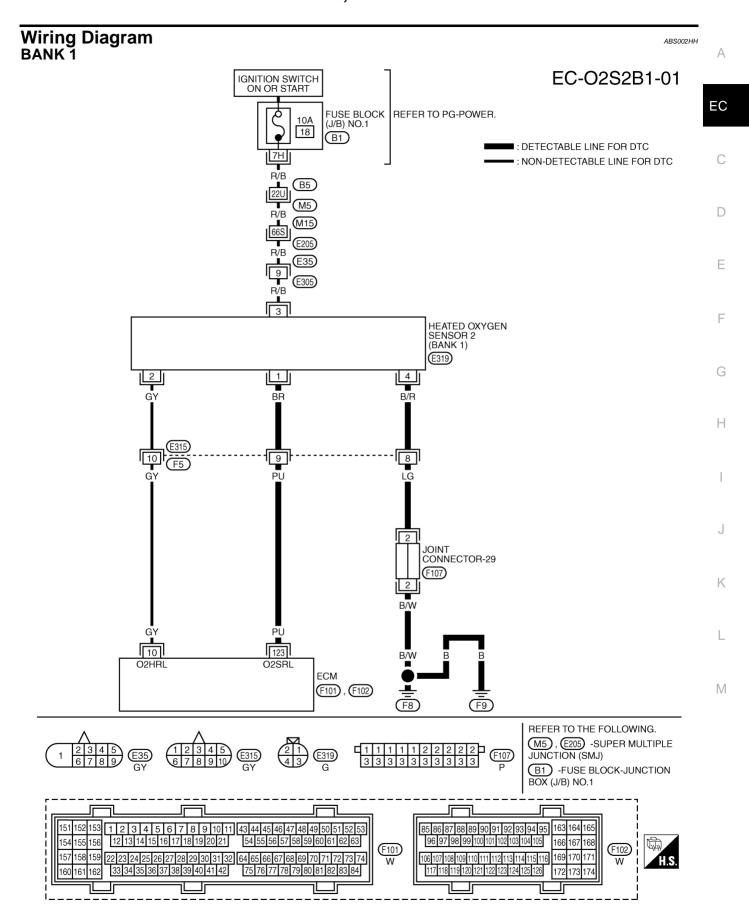
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0138 0138 (Bank 1)	Heated oxygen sensor 2	An excessively high voltage from the sensor	Harness or connectors (The sensor circuit is open or shorted)
P0158 0158 (Bank 2)	circuit high voltage	is sent to ECM.	Heated oxygen sensor 2

DTC Confirmation Procedure


ABS002HI

NOTE

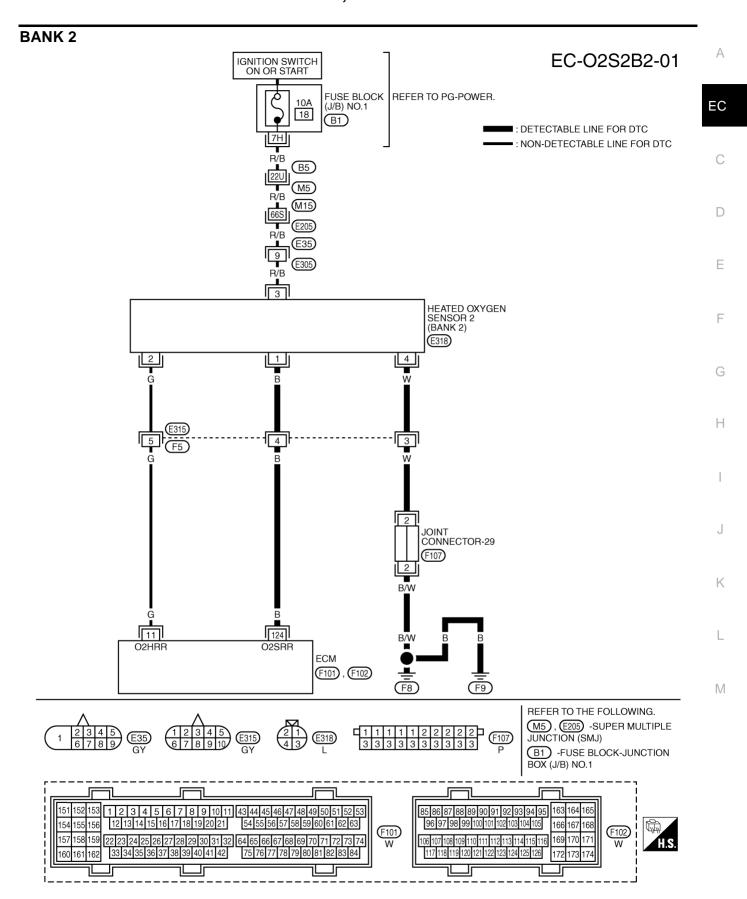
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(P) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 2 minutes.
- 6. If 1st trip DTC is detected, go to EC-250, "Diagnostic Procedure"

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 2 minutes.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 7. Let engine idle for 2 minutes.
- 8. Select "MODE 3" with GST.
- 9. If 1st trip DTC is detected, go to EC-250, "Diagnostic Procedure".
 - When using GST, DTC Confirmation Procedure should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.


TBWA0276E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
123	PU	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V

TBWA0277E

Specification data are reference values and are measured between each terminal and ground.

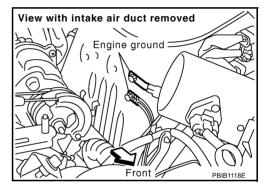
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
124	В	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V

Diagnostic Procedure

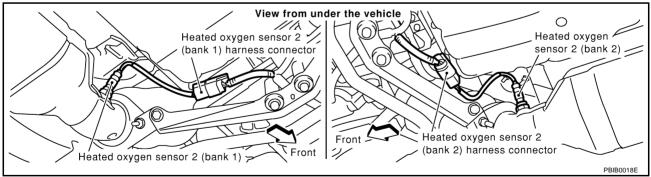
1. CHECK GROUND CONNECTIONS


1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

OK >> GO TO 2.


NG >> Repair or replace ground connections.

ABS002HI

2. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

Disconnect heated oxygen sensor 2 harness connector.

2. Check harness continuity between HO2S2 terminal 4 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

$\overline{3}$. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E315, F5
- Joint connector-29
- Harness open or short between HO2S2 and ground
 - >> Repair open circuit or short to power in harness or connectors.

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dalik
P0138	123	1	1
P0158	124	1	2

Continuity should exist.

3. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank	
ыс	ECM	Sensor	Dailk
P0138	123	1	1
P0158	124	1	2

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E315, F5
- Harness for open or short between HO2S2 and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-252, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace malfunctioning heated oxygen sensor 2.

EC

С

D

Е

Н

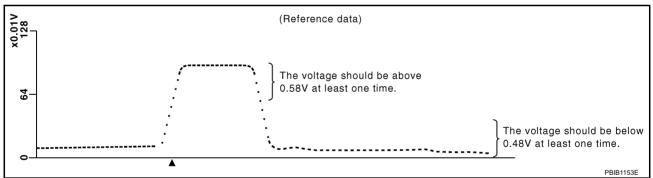
L

7. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2


ABS002HJ

(F) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- Let engine idle for 1 minute.
- 5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.

ACTIVE TES		
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S2 (B1)	xxx v	
HO2S2 (B2)	xxx v	
HO2S2 MNTR (B1)	LEAN	
HO2S2 MNTR (B2)	RICH	
		PBIB1918E

6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.58V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 123 [HO2S2 (B1) signal] or 124 [HO2S2 (B2) signal] and ground.

6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.58V at least once during this procedure.

If the voltage is above 0.58V at step 6, step 7 is not necessary.

7. Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.

The voltage should be below 0.48V at least once during this procedure.

8. If NG, replace heated oxygen sensor 2.

ECM OCONNECTOR C H 123 124 123: Bank 1 124: Bank 2

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EM-22, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

ABS002HK

- -

Α

EC

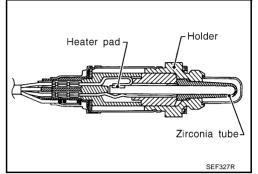
D

Н

G

PFP:226A0

Component Description


ABS002HI

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

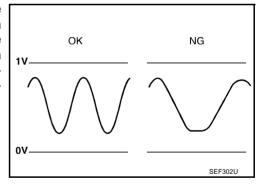
Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

ARSONSHIM


Specification data are reference values.

MONITOR ITEM	CONDI	TION	SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Warm-up condition After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle up to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Warm-up condition After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle up to 3,000 rpm quickly.	LEAN ←→ RICH

On Board Diagnosis Logic

ABS002HN

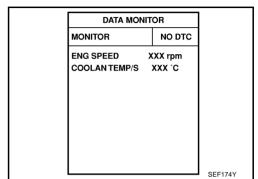
The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0139 0139 (Bank 1) P0159 0159 (Bank 2)	Heated oxygen sensor 2 circuit slow response	It takes more time for the sensor to respond between rich and lean than the specified time.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2 Fuel pressure Fuel injector Intake air leaks

DTC Confirmation Procedure

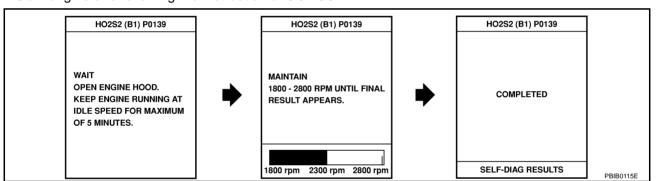
RSOOSHO

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

TESTING CONDITION:


For better results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30 °C (32 to 86 °F).

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
 - If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).

7. Select "HO2S2 (B1) P0139" or "HO2S2 (B2) P0159" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.

8. Start engine and following the instruction of CONSULT-II.

- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 If "NG" is displayed, refer to <u>EC-260, "Diagnostic Procedure"</u>.
 If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

Overall Function Check

ABS002HP

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

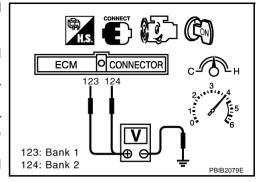
- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 123 [HO2S2 (B1) signal] or 124 [HO2S2 (B2) signal] and ground.

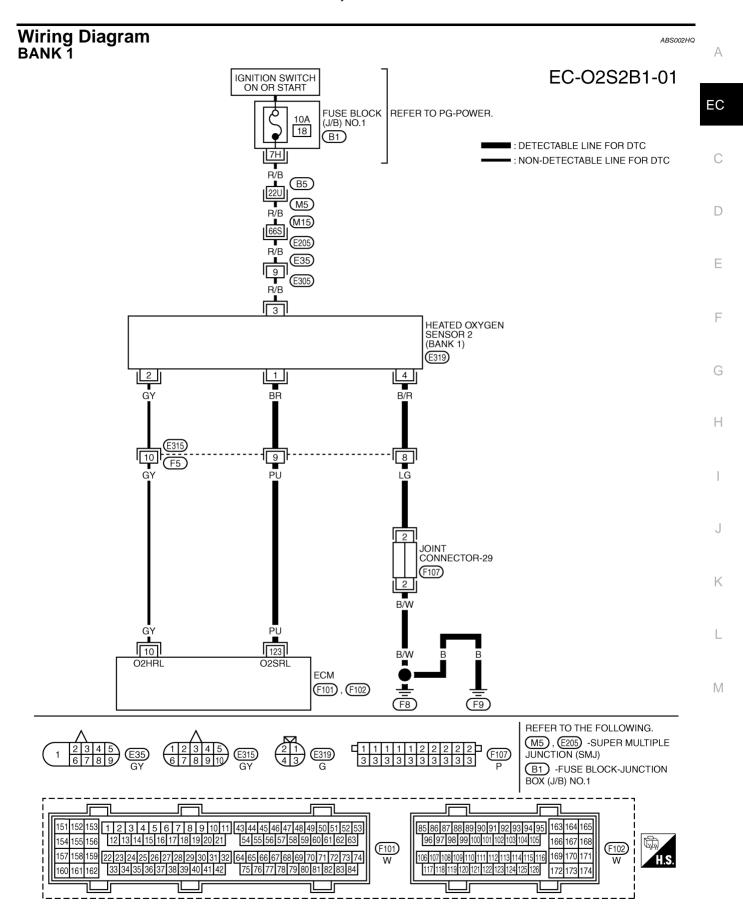
EC

Α

=

.

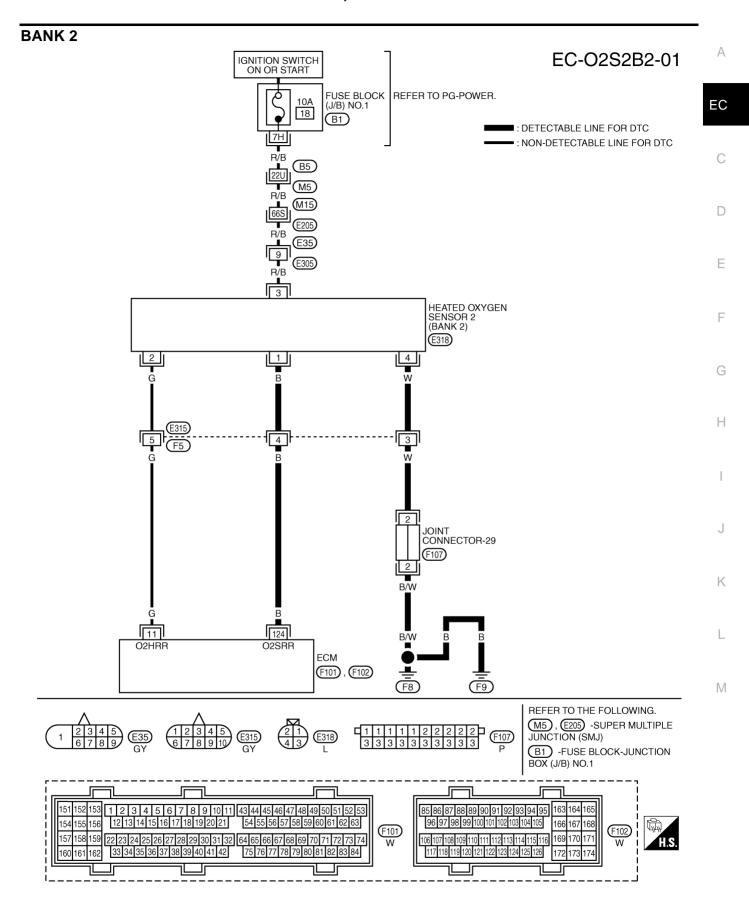

Н


Κ

M

IP.

- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) A voltage change should be more than 0.06V for 1 second during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - A voltage change should be more than 0.06V for 1 second during this procedure.
- 8. If NG, go to EC-260, "Diagnostic Procedure".


TBWA0276E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
123	PU	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V

TBWA0277E

Specification data are reference values and are measured between each terminal and ground.

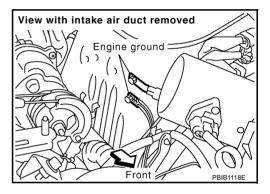
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
124	В	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V

Diagnostic Procedure

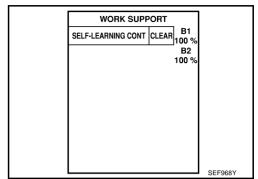
ABS002HR


1. CHECK GROUND CONNECTIONS

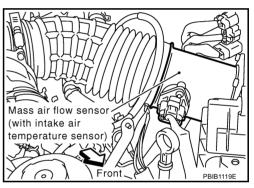
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to EC-141, "Ground Inspection".

OK or NG

OK >> GO TO 2.


NG >> Repair or replace ground connections.

2. CLEAR THE SELF-LEARNING DATA


(II) With CONSULT-II

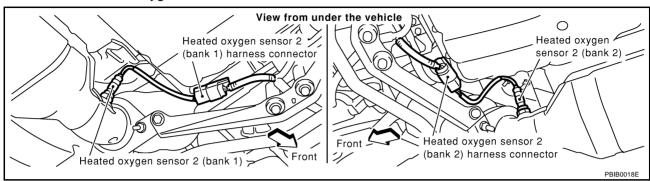
- 1. Start engine and warm it up to normal operating temperature.
- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-62</u>, "<u>HOW TO ERASE</u> EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

Yes or No

Yes \Rightarrow Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to <u>EC-266</u> or <u>EC-275</u>. No \Rightarrow GO TO 3.


EC

F

Н

3. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.

3. Check harness continuity between HO2S2 terminal 4 and ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. CHECK HEATED OXYGEN SENSOR 2

Check the following.

- Harness connectors E315, F5
- joint connector-29
- harness for open or short between HO2S2 and ground
 - >> Repair open circuit or short to power in harness or connectors.

5. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Term	Bank		
ыс	ECM	Sensor	Dalik	
P0139	123	1	1	
P0159	124	1	2	

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank		
ы	ECM	Sensor	Dank	
P0139	123	1	1	
P0159	124	1	2	

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. CHECK HEATED OXYGEN SENSOR 2

Check the following.

- Harness connectors E315, F5
- harness for open or short between HO2S2 and ground

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-263, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace malfunctioning heated oxygen sensor 2.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

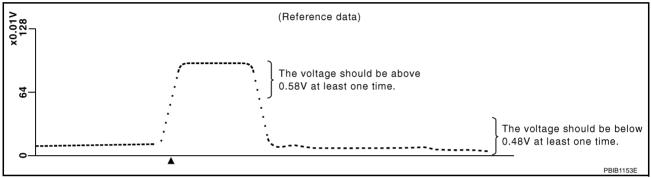
With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- Let engine idle for 1 minute.

EC

F

Н

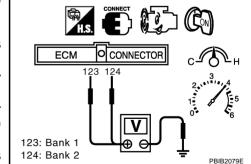

M

ABS002HS

5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.

ACTIVE TES		
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S2 (B1)	xxx v	
HO2S2 (B2)	xxx v	
HO2S2 MNTR (B1)	LEAN	
HO2S2 MNTR (B2)	RICH	
		DDID4040E
		PBIB1918E

6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.


"HO2S2 (B1)/(B2)" should be above 0.58V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 123 [HO2S2 (B1) signal] or 124 [HO2S2 (B2) signal] and ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.58V at least once during this procedure.
 - If the voltage is above 0.58V at step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be below 0.48V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

ABS002HT

Refer to EM-22, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

EC

Α

С

D

Е

F

G

Н

J

Κ

DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

ARSONAHII

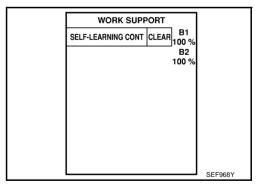
With the Air-Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM function	Actuator
Heated oxygen sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injector

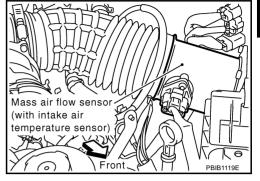
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0171			Intake air leaks
0171 (Bank 1)			Heated oxygen sensor 1
(Dalik I)			Fuel injector
	Fuel injection system too	• Fuel injection system does not operate properly.	Exhaust gas leaks
P0174	0174	The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.)	Incorrect fuel pressure
-			Lack of fuel
(Bank 2)			Mass air flow sensor
			 Incorrect PCV hose connection

DTC Confirmation Procedure


ABS002HV

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- 5. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes.
 The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to <u>EC-270</u>, "Diagnostic Procedure".
- 7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- Crank engine while depressing accelerator pedal. If engine starts, go to <u>EC-270</u>, "<u>Diagnostic Procedure</u>". If engine does not start, check exhaust and intake air leak visually.

WITH GST

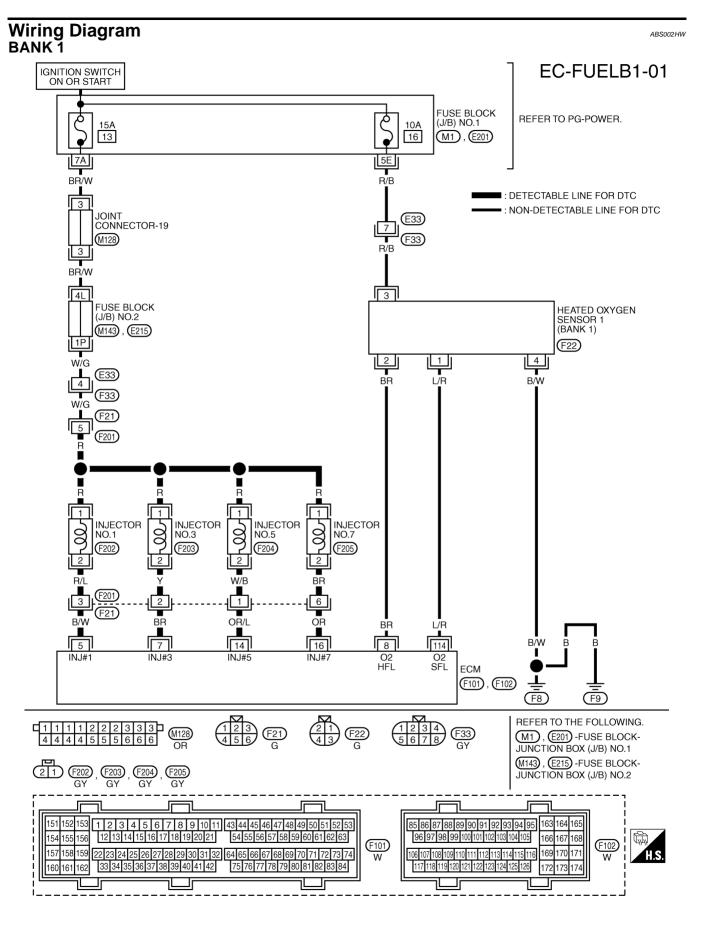
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor harness connector. Then restart and let engine idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Select "MODE 3" with GST. Make sure DTC P0102 is detected.
- Select "MODE 4" with GST and erase the DTC P0102.
- 7. Start engine again and let it idle for at least 10 minutes.
- 8. Select "MODE 7" with GST. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to EC-270, "Diagnostic Procedure".
- 9. If it is difficult to start engine at step 7, the fuel injection system has a malfunction.
- 10. Crank engine while depressing accelerator pedal. If engine starts, go to EC-270, "Diagnostic Procedure". If engine does not start, check exhaust and intake air leak visually.

EC

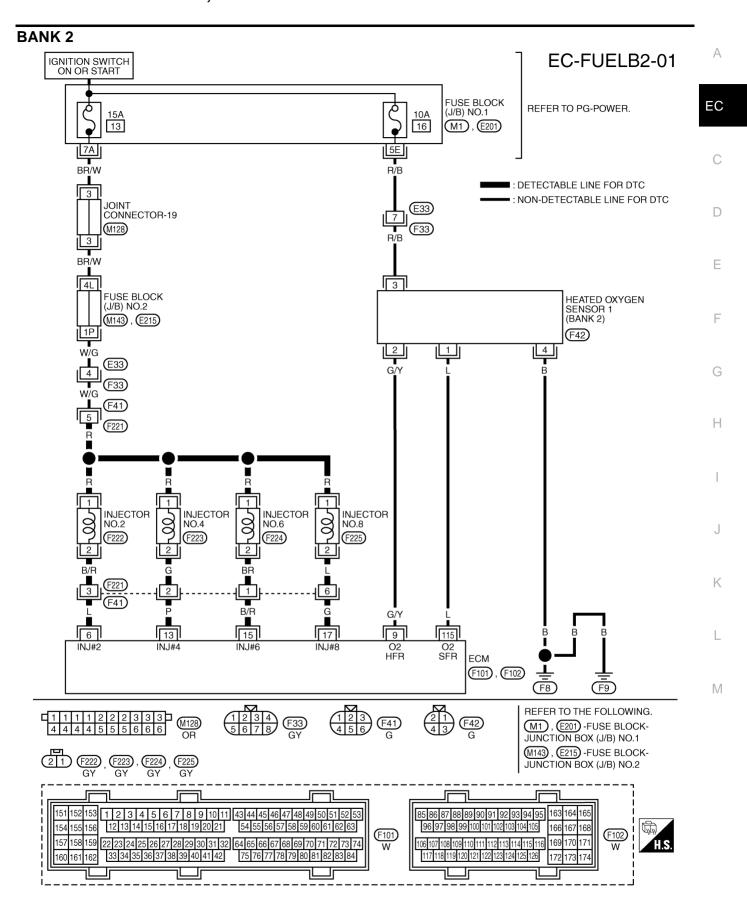
Α

С

D


Е

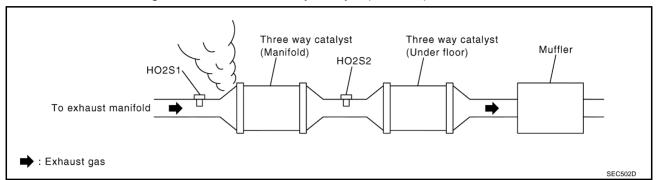
G


Н

K

L

TBWA0278E


TBWA0279E

Diagnostic Procedure

1. CHECK EXHAUST GAS LEAK

ABS002HX

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK

- 1. Listen for an intake air leak after the mass air flow sensor.
- 2. Check PCV hose connection.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect corresponding heated oxygen sensor 1 (HO2S1) harness connector.
- Disconnect ECM harness connector.
- 4. Check harness continuity between ECM terminal and HO2S1 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank		
ыс	ECM	Sensor	Dalik	
P0171	114	1	1	
P0174	115	1	2	

Continuity should exist.

5. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	Bank	
	ECM	Sensor	Dank
P0171	114	1	1
P0174	115	1	2

Continuity should not exist.

6. Check harness continuity between HO2S1 terminal 4 and ground.

Continuity should exist.

7. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ECM and HO2S1
- Harness for open or short between HO2S1 and ground

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to EC-46, "FUEL PRESSURE RELEASE".
- Install fuel pressure gauge and check fuel pressure. Refer to <u>EC-48, "FUEL PRESSURE CHECK"</u>.

At idling: 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 7. NG >> GO TO 6. EC

С

D

F

G

Н

K

6. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to <u>EC-519</u>, <u>EC-674</u>.)
- Fuel pressure regulator (Refer to EC-48.)
- Fuel lines (Refer to MA-14, "Checking Fuel Lines".)
- Fuel filter for clogging
 - >> Repair or replace.

7. CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-II

- 1. Install all removed parts.
- 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

3.8 - 5.2 g·m/sec: at idling 16.0 - 21.5 g·m/sec: at 2,500 rpm

With GST

- 1. Install all removed parts.
- 2. Check mass air flow sensor signal in MODE 1 with GST.

3.8 - 5.2 g·m/sec: at idling 16.0 - 21.5 g·m/sec: at 2,500 rpm

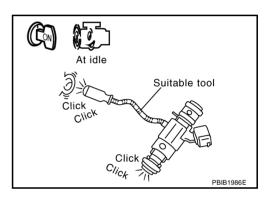
OK or NG

OK >> GO TO 8.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or grounds. Refer to EC-174, "DTC P0101 MAF SENSOR".

8. CHECK FUNCTION OF INJECTORS

(P) With CONSULT-II


- Start engine.
- Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TES	T T	
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

Without CONSULT-II

- 1. Start engine.
- Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

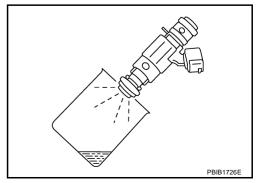
OK >> GO TO 9.

NG >> Perform trouble diagnosis for EC-661, "INJECTOR CIRCUIT".

9. CHECK INJECTOR

- 1. Turn ignition switch OFF.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- Disconnect all injector harness connectors.
- Remove injector gallery assembly. Refer to EM-31, "FUEL INJECTOR AND FUEL TUBE". Keep fuel hose and all injectors connected to injector gallery.
- For DTC P0171, reconnect injector harness connectors on bank 1. For DTC P0174, reconnect injector harness connectors on bank 2.
- Disconnect all ignition coil harness connectors.
- 7. Prepare pans or saucers under each injector.
- Crank engine for about 3 seconds. For DTC P0171, make sure that fuel sprays out from injectors

For DTC P0174, make sure that fuel sprays out from injectors on bank 2.


Fuel should be sprayed evenly for each injector.

OK or NG

OK >> GO TO 10.

Revision: 2004 October

NG >> Replace injectors from which fuel does not spray out. Always replace O-ring with new ones.

EC

 D

F

M

10. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

ABS002HY

With the Air-Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

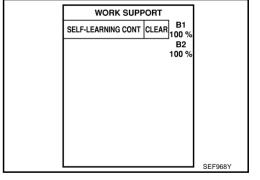
In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input Signal to ECM	ECM function	Actuator
Heated oxygen sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injector

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0172			Heated oxygen sensor 1
0172 (Bank 1)	E - 11:1: - 2:	Fuel injection system does not operate properly.	Fuel injector
	Fuel injection system too rich	The amount of mixture ratio compensation is too	Exhaust gas leaks
P0175 0175	non	large. (The mixture ratio is too rich.)	Incorrect fuel pressure
(Bank 2)			Mass air flow sensor

DTC Confirmation Procedure

ABS002HZ


NOTF:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

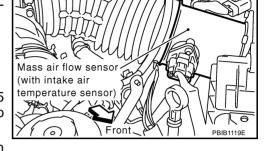
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- Clear the self-learning control coefficient by touching "CLEAR".
- 5. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes.
 The 1st trip DTC P0172 or P0175 should be detected at this stage, if a malfunction exists. If so, go to <u>EC-279</u>, "<u>Diagnostic Procedure</u>".
- 7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- 8. Crank engine while depressing accelerator pedal.

 If engine starts, go to EC-279, "Diagnostic Procedure". If engine does not start, remove ignition plugs and check for fouling, etc.

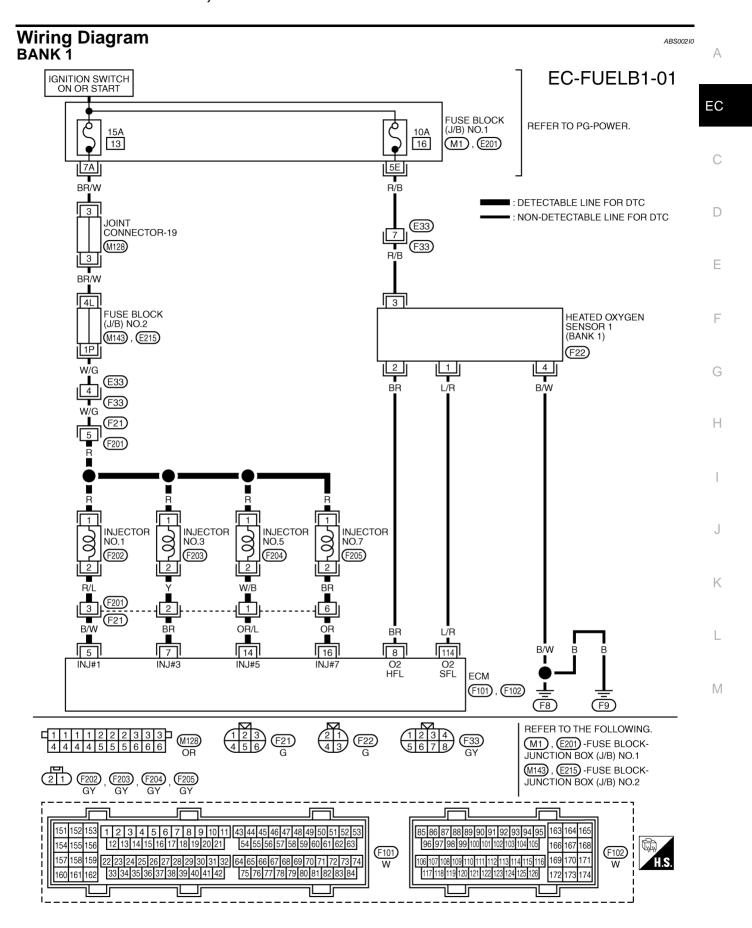
EC

Α

C


F

D

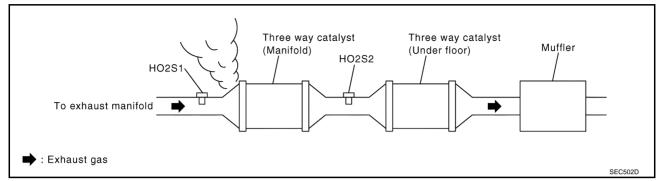

L

⊚ WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor harness connector. Then restart and let engine idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Select "MODE 3" with GST. Make sure DTC P0102 is detected.
- Select "MODE 4" with GST and erase the DTC P0102.
- 7. Start engine again and let it idle for at least 10 minutes.
- 8. Select "MODE 7" with GST. The 1st trip DTC P0172 or P0175 should be detected at this stage, if a malfunction exists. If so, go to EC-279, "Diagnostic Procedure".
- 9. If it is difficult to start engine at step 7, the fuel injection system has a malfunction.

Crank engine while depressing accelerator pedal.
 If engine starts, go to <u>EC-279</u>, "<u>Diagnostic Procedure</u>". If engine does not start, remove ignition plugs and check for fouling, etc.

TBWA0278E


TBWA0279E

Diagnostic Procedure

ABS00211

1. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

EC

Α

С

D

Е

G

F

Н

. .

Κ

L

3. CHECK HEATED OXYGEN SENSOR 1 CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect corresponding heated oxygen sensor 1 (HO2S1) harness connector.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal and HO2S1 terminal as follows.
 Refer to Wiring Diagram.

DTC	Terminals		Bank
DIC	ECM	Sensor	Dank
P0172	114	1	1
P0175	115	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Terminals		Bank
DIC	ECM	Sensor	Dank
P0172	114	1	1
P0175	115	1	2

Continuity should not exist.

6. Check harness continuity between HO2S1 terminal 4 and ground.

Continuity should exist.

7. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness for open or short between ECM and HO2S1
- Harness for open or short between HO2S1 and ground

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to EC-46, "FUEL PRESSURE RELEASE" .
- Install fuel pressure gauge and check fuel pressure. Refer to <u>EC-48, "FUEL PRESSURE CHECK"</u>.

At idling: 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART Check the following. Fuel pump and circuit (Refer to EC-519, EC-674.) EC Fuel pressure regulator (Refer to EC-48.) >> Repair or replace. 7. CHECK MASS AIR FLOW SENSOR (P) With CONSULT-II 1. Install all removed parts. 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II. 3.8 - 5.2 g·m/sec: at idling 16.0 - 21.5 g·m/sec: at 2,500 rpm **With GST** 1. Install all removed parts. 2. Check mass air flow sensor signal in MODE 1 with GST. 3.8 - 5.2 g·m/sec: at idling 16.0 - 21.5 g·m/sec: at 2,500 rpm OK or NG OK >> GO TO 8. NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or grounds. Refer to EC-174, "DTC P0101 MAF SENSOR".

D

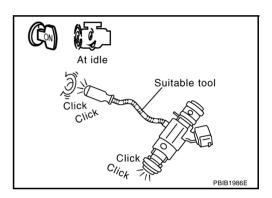
F

G

Н

8. CHECK FUNCTION OF INJECTORS

(II) With CONSULT-II


- Start engine.
- Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TES	3T	
POWER BALANCE		
MONITOR	ł	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

W Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound.

Clicking noise should be heard.

OK or NG

OK >> GO TO 9.

NG >> Perform trouble diagnosis for <u>EC-661</u>, "INJECTOR CIRCUIT".

9. CHECK INJECTOR

- 1. Turn ignition switch OFF.
- Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- Remove injector assembly. Refer to <u>EM-31</u>, "<u>FUEL INJECTOR AND FUEL TUBE</u>". Keep fuel hose and all injectors connected to injector gallery.
- 4. Disconnect all injector harness connectors.
- 5. Disconnect all ignition coil harness connectors.
- 6. Prepare pans or saucers under each injectors.
- Crank engine for about 3 seconds.
 Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip.)>>GO TO 10.

NG (Drips.)>>Replace the injectors from which fuel is dripping. Always replace O-ring with new one.

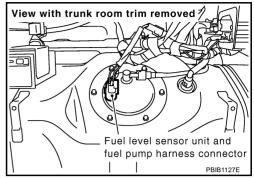
10. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0181 FTT SENSOR

PFP:22630


Component Description

ARSONNI

Α

EC

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance $k\Omega$
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} This data is reference values and is measured between ECM terminal 92 (Fuel tank temperature sensor) and ground.

-Acceptable Resistance kn 1.0 0.4 0.2 0 20 40 60 80 100 (32) (68) (104) (140) (176) (212) Temperature °C (°F) SEF012P

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

ABS00213

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0181 0181	Fuel tank temperature sensor circuit range/ performance	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor	 Harness or connectors (The sensor circuit is open or shorted) Fuel tank temperature sensor

DTC Confirmation Procedure

ABS00214

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

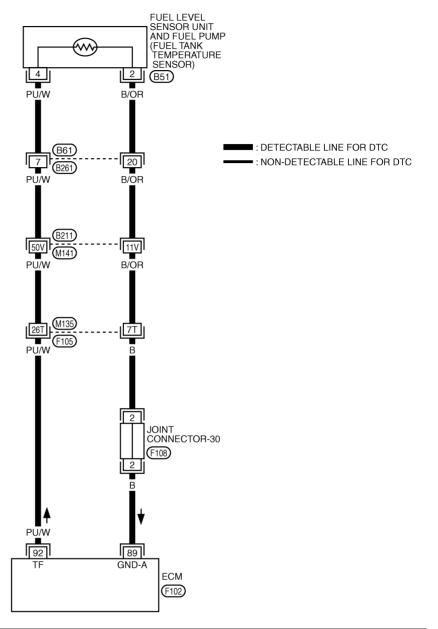
(A) WITH CONSULT-II

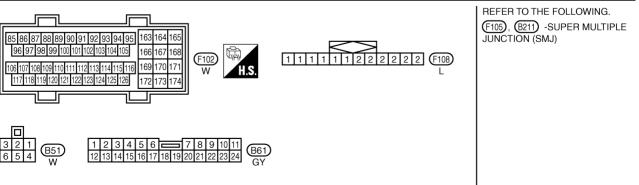
- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 10 seconds. If 1st trip DTC is detected, go to EC-286, "Diagnostic Procedure"

If 1st trip DTC is not detected, go to following step.

- Check "COOLAN TEMP/S" value. If "COOLAN TEMP/S" is less than 60°C (140°F), the result will
- If "COOLAN TEMP/S" is above 60°C (140°F), go to the following
- ENG SPEED XXX rpm COOLAN TEMP/S
- 5. Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).
- Wait at least 10 seconds.
- If 1st trip DTC is detected, go to EC-286, "Diagnostic Procedure".

DTC P0181 FTT SENSOR


WITH GST


Follow the procedure WITH CONSULT-II above.

Wiring Diagram

ABS002/5

EC-FTTS-01

TBWA0280E

EC

С

Α

D

Е

F

G

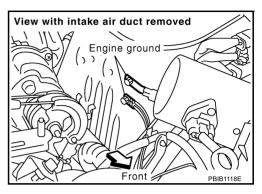
Н

J

<

DTC P0181 FTT SENSOR

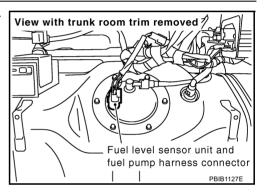
Diagnostic Procedure


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws.
 Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

OK or NG

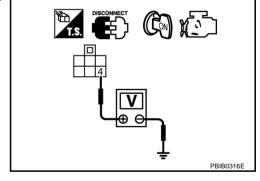
OK >> GO TO 2.


NG >> Repair or replace ground connections.

ABS00216

2. CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B61, B261
- Harness connectors B211, M141
- Harness connectors M135, F105
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"
 - >> Repair open circuit or short to ground or short to power in harness or connector.

DTC P0181 FTT SENSOR

4. CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between "fuel level sensor unit and fuel pump" terminal 2 and ECM terminal 89. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 6.

>> GO TO 5. NG

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B61, B261
- Harness connectors B211, M141
- Harness connectors M135, F105
- Joint connector-30
- Harness for open or short between ECM and "fuel level sensor unit and fuel" pump
 - >> Repair open circuit or short to ground or short to power in harness or connector.

6. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-287, "Component Inspection".

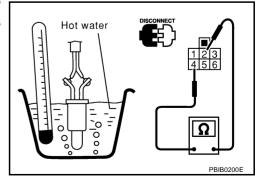
OK or NG

OK >> GO TO 6.

NG >> Replace fuel level sensor unit.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection FUEL TANK TEMPERATURE SENSOR

Remove fuel level sensor unit.

Check resistance between "fuel level sensor unit and fuel pump" terminals 4 and 2 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

Removal and Installation **FUEL TANK TEMPERATURE SENSOR**

Revision: 2004 October

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

EC-287

EC

 D

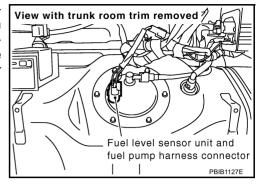
F

Н

ABS00217

M

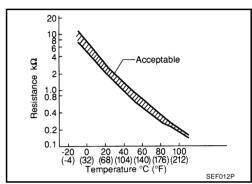
ABS00218


DTC P0182, P0183 FTT SENSOR

PFP:22630

Component Description

ABS00219


The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance $k\Omega$
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} This data is reference values and is measured between ECM terminal 92 (Fuel tank temperature sensor) and ground.

CAUTION:

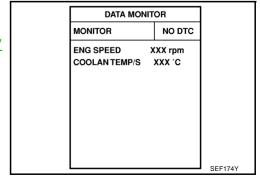
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

ABS002IA

	DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
•	P0182 0182	Fuel tank temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
	P0183 0183	Fuel tank temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Fuel tank temperature sensor

DTC Confirmation Procedure


ABS002IB

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-290, "Diagnostic Procedure"

WITH GST

Follow the procedure WITH CONSULT-II above.

Wiring Diagram

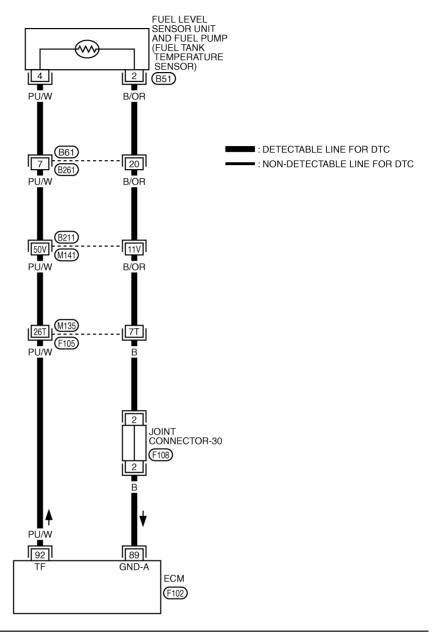
ABS002IC

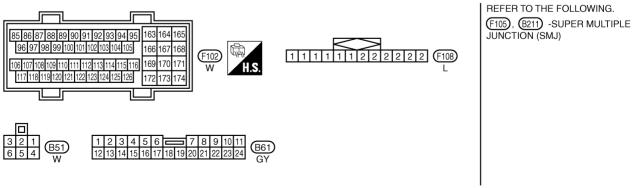
EC-FTTS-01

Α

EC

С


D


Е

G

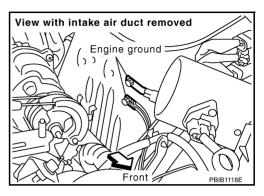
Н

M

TBWA0280E

DTC P0182, P0183 FTT SENSOR

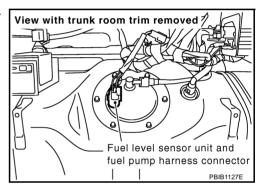
Diagnostic Procedure


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

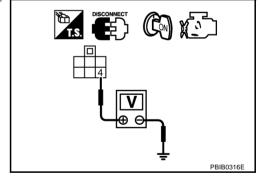
OK >> GO TO 2.


NG >> Repair or replace ground connections.

ABS002ID

2. CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B61, B261
- Harness connectors B211, M141
- Harness connectors M135, F105
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"
 - >> Repair open circuit or short to ground or short to power in harness or connector.

DTC P0182, P0183 FTT SENSOR

4. CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between "fuel level sensor unit and fuel pump" terminal 2 and ECM terminal 89. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 6.

>> GO TO 5. NG

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B61, B261
- Harness connectors B211, M141
- Harness connectors M135, F105
- Joint connector-30
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"
 - >> Repair open circuit short to ground or short to power in harness or connector.

6. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-291, "Component Inspection".

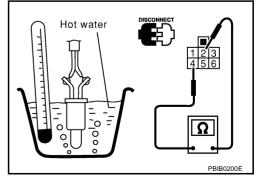
OK or NG

OK >> GO TO 7.

NG >> Replace fuel level sensor unit.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection FUEL TANK TEMPERATURE SENSOR

Remove fuel level sensor unit.

Check resistance between "fuel level sensor unit and fuel pump" terminals 4 and 2 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

Removal and Installation **FUEL TANK TEMPERATURE SENSOR**

Revision: 2004 October

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

EC-291

EC

 D

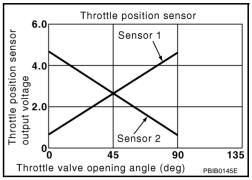
F

Н

ABS002IE

M

ABS002IF


PFP:16119

Component Description

ABS002IG

Electric throttle control actuator consists of throttle control motor, acceleration pedal position sensor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

ABS002IH

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN 1 THRTL SEN 2*	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
	Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

ABS002II

NOTE:

If DTC P0222, P0223 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to <u>EC-531</u>.

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0222 0222	Throttle position sensor 1 circuit low input	An excessively low voltage from the TP sensor 1 is sent to ECM.	Harness or connectors (The TP sensor 1 circuit is open or
P0223 0223	Throttle position sensor 1 circuit high input	An excessively high voltage from the TP sensor 1 is sent to ECM.	shorted.) • Electric throttle control actuator (TP sensor 1)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

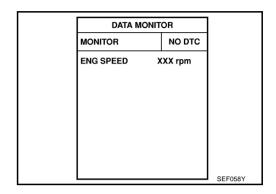
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

Benosii

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-295, "Diagnostic Procedure" .

WITH GST

Follow the procedure WITH CONSULT-II above.

EC

Α

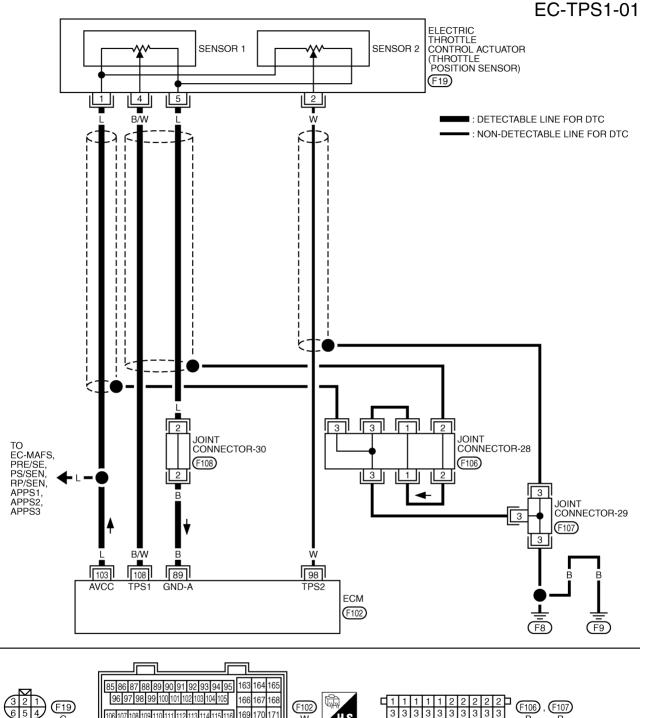
С

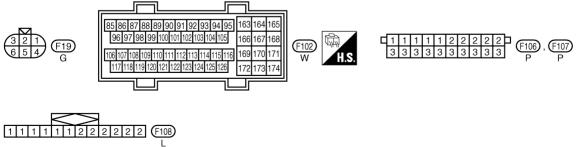
D

F

F

G


Н


K

ı

Wiring Diagram

ABS002/K

TBWA0281E

Specification data are reference values and are measured between each terminal and ground.

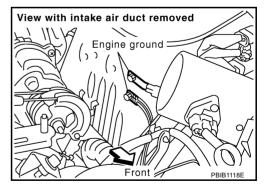
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
			[Engine is running]		C
89	В	Sensor ground	Warm-up condition	Approximately 0V	
			• Idle speed		
			[Ignition switch: ON]		
			Engine stopped	1 4 4 75\/	
			Selector lever: D	Less than 4.75V	
	147		Accelerator pedal: Fully released		Е
98	W	Throttle position sensor 2	[Ignition switch: ON]		_
			Engine stopped		
			Selector lever: D	More than 0.36V	F
			Accelerator pedal: Fully depressed		
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V	(-
			[Ignition switch: ON]		
			Engine stopped	M	
	108 B/W Throttle position sensor 1	Selector lever: D	More than 0.36V	-	
400		Accelerator pedal: Fully released			
108		B/VV	[Ignition switch: ON]		
		Engine stopped	L 4b 4.75\/		
		Selector lever: D	Less than 4.75V		
			Accelerator pedal: Fully depressed		

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

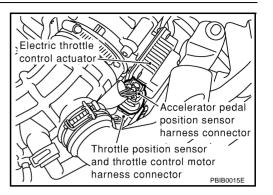

Turn ignition switch OFF.

Loosen and retighten two ground screws. Refer to EC-141, "Ground Inspection".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.


С

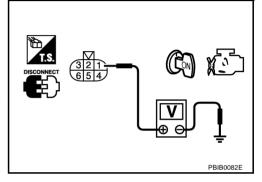
Α

ABS002IL

2. CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.

 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair on

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK THROTTLE POSITION SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 5 and ECM terminal 89. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-30
- Harness for open or short between electric throttle control actuator and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK THROTTLE POSITION SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 108 and electric throttle control actuator terminal 4.
Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Revision: 2004 October **EC-296** 2004 M45

6. CHECK THROTTLE POSITION SENSOR

Refer to EC-297, "Component Inspection".

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

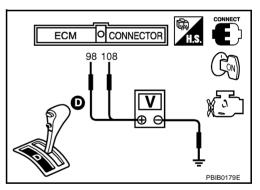
8. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

Reconnect all harness connectors disconnected.


- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Turn ignition switch ON.
- Set selector lever to D position.
- 6. Check voltage between ECM terminals 108 (TP sensor 1 signal), 98 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
108 (Throttle position sensor 1)	Fully released	More than 0.36V
	Fully depressed	Less than 4.75V
98 (Throttle position sensor 2)	Fully released	Less than 4.75V
	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- 8. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 9. Perform EC-44, "Throttle Valve Closed Position Learning".
- 10. Perform EC-44, "Idle Air Volume Learning".

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-18, "INTAKE MANIFOLD".

EC

C

F

F

ABS002IM

Н

K

ı

M

ABS002IN

DTC P0300 - P0308 NO. 8 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

DTC P0300 - P0308 NO. 8 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

On Board Diagnosis Logic

ABS002 IA

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the crank-shaft position (CKP) sensor (POS) signal to vary, ECM can determine that a misfire is occurring.

Sensor	Input Signal to ECM	ECM function
Crankshaft position sensor (POS)	Engine speed	On board diagnosis of misfire

The misfire detection logic consists of the following two conditions.

- One Trip Detection Logic (Three Way Catalyst Damage)
 - On the 1st trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.
 - When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change.
 - When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off. If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink.
 - When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on. If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.
- 2. Two Trip Detection Logic (Exhaust quality deterioration)
 - For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolutions.
 - A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0300 0300	Multiple cylinder misfire detected	Multiple cylinder misfire.	
P0301 0301	No.1 cylinder misfire detected	No. 1 cylinder misfires.	Improper spark plug
P0302 0302	No. 2 cylinder misfire detected	No. 2 cylinder misfires.	 Insufficient compression Incorrect fuel pressure
P0303 0303	No. 3 cylinder misfire detected	No. 3 cylinder misfires.	The injector circuit is open or shorted Fuel injector
P0304 0304	No. 4 cylinder misfire detected	No. 4 cylinder misfires.	Intake air leakThe ignition signal circuit is open or
P0305 0305	No. 5 cylinder misfire detected	No. 5 cylinder misfires.	shorted Lack of fuel
P0306 0306	No. 6 cylinder misfire detected	No. 6 cylinder misfires.	Drive plateHeated oxygen sensor 1
P0307 0307	No. 7 cylinder misfire detected	No. 7 cylinder misfires.	Incorrect PCV hose connection
P0308 0308	No. 8 cylinder misfire detected	No. 8 cylinder misfires.	

DTC P0300 - P0308 NO. 8 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MIS-

DTC Confirmation Procedure

DATA MONITOR

COOLAN TEMP/S XXX °C VHCL SPEED SE XXX km/h

B/FUEL SCHDL XXX msec

NO DTC

XXX rpm

MONITOR

ENG SPEED

CAUTION:

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws when driving.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- Turn ignition switch ON, and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Restart engine and let it idle for about 15 minutes.
- If 1st trip DTC is detected, go to EC-299, "Diagnostic Procedure"

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for a certain time. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data \pm 400 rpm	
Vehicle speed in the feaze frame data ± 10 km/h (6 MPH)		
Engine coolant temperature	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
(T) condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

The time to driving varies according to the engine speed in the freeze frame data.

Engine speed	Time
Around 1,000 rpm	Approximately 10 minutes
Around 2,000 rpm	Approximately 5 minutes
More than 3,000 rpm	Approximately 3.5 minutes

WITH GST

Follow the procedure WITH CONSULT-II above.

Diagnostic Procedure

ABS002J7

1. CHECK FOR INTAKE AIR LEAK

- Start engine and run it at idle speed.
- Listen for the sound of the intake air leak. 2.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

Α

EC

F

PBIB0164E

Н

DTC P0300 - P0308 NO. 8 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

$\overline{2}$. CHECK FOR EXHAUST SYSTEM CLOGGING

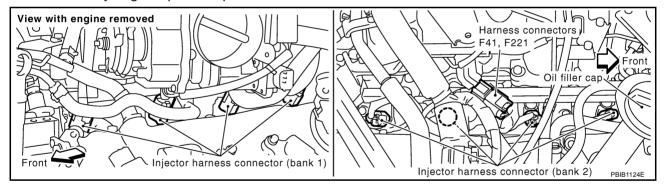
- 1. Stop engine
- 2. Turn ignition switch OFF
- 3. Visually check exhaust tube, three way catalyst and muffler for dents.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace it.

3. PERFORM POWER BALANCE TEST


(P) With CONSULT-II

- 1. Restart engine at idle.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode.
- 3. Is there any cylinder which does not produce a momentary engine speed drop?

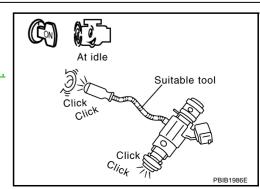
		1
ACTIVE TEST		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
L		PBIB0133E

⋈ Without CONSULT-II

When disconnecting each injector harness connector one at a time, is there any cylinder which does not produce a momentary engine speed drop?

Yes or No

Yes >> GO TO 4. No >> GO TO 7.


4. CHECK INJECTOR

Does each injector make an operating sound at idle?

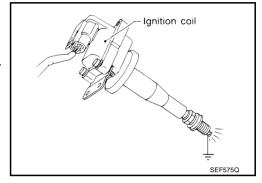
Yes or No

Yes >> GO TO 5.

No >> Check injector(s) and circuit(s). Refer to <u>EC-661</u>, "INJECTOR CIRCUIT".

DTC P0300 - P0308 NO. 8 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MIS-

5. CHECK IGNITION SPARK


- Stop engine and turn ignition switch OFF. 1.
- 2. Remove ignition coil assembly from rocker cover.
- 3. Connect a known-good spark plug to the ignition wire.
- 4. Disconnect all injector harness connectors.
- Place end of spark plug against a suitable ground and crank engine.
- 6. Check for spark.

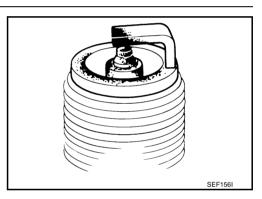
OK or NG

NG

OK >> GO TO 6.

> >> Check ignition coil, power transistor and their circuits. Refer to EC-649, "IGNITION SIGNAL".

6. CHECK SPARK PLUGS


Remove the spark plugs and check for fouling, etc.

OK or NG

OK >> GO TO 7.

NG

>> Repair or replace spark plug(s) with standard type one(s). For spark plug type, refer to, MA-12, "ENGINE MAINTENANCE".

7. CHECK COMPRESSION PRESSURE

Check compression pressure. Refer to EM-65, "CHECKING COMPRESSION PRESSURE" ,.

1,320 kPa (13.5 kg/cm², 191 psi)/300 rpm Standard:

1,130 kPa (11.5 kg/cm², 164 psi)/300 rpm Minimum:

Difference between each 98 kPa (1.0 kg/cm², 14 psi)/300 rpm

cylinder:

OK or NG

OK >> GO TO 8.

NG >> Check pistons, piston rings, valves, valve seats and cylinder head gaskets.

8. CHECK FUEL PRESSURE

- 1. Install all removed parts.
- Release fuel pressure to zero. Refer to EC-46, "FUEL PRESSURE RELEASE".
- Install fuel pressure gauge and check fuel pressure. Refer to EC-48, "FUEL PRESSURE CHECK" .

Approximately. 350 kPa (3.57 kg/cm², 51 psi) At idle:

OK or NG

>> GO TO 10. OK NG >> GO TO 9.

EC-301 Revision: 2004 October 2004 M45

EC

Н

DTC P0300 - P0308 NO. 8 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

9. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to <u>EC-519</u>, "<u>DTC P1220 FUEL PUMP CONTROL MODULE (FPCM)"</u>, <u>EC-674</u>, "FUEL PUMP CIRCUIT".)
- Fuel pressure regulator (Refer to <u>EC-48</u>.)
- Fuel lines (Refer to MA-14, "Checking Fuel Lines" .)
- Fuel filter for clogging

>> Repair or replace.

10. CHECK IGNITION TIMING

Check the following items. Refer to EC-81, "Basic Inspection".

Items	Specifications	
Target idle speed	650 ± 50 rpm (in P or N position)	
Ignition timing	12 ± 5° BTDC (in P or N position)	

OK or NG

OK >> GO TO 11.

NG >> Follow the Basic Inspection.

11. CHECK HEATED OXYGEN SENSOR 1 BANK 1/BANK 2

Refer to EC-222, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace malfunctioning heated oxygen sensor 1.

12. CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-II

Check mass air flow sensor signal in "DATA MONITOR" mode with CONSULT-II.

3.8 - 5.2 g·m/sec: at idling 16.0 - 21.5 g·m/sec: at 2,500 rpm

With GST

Check mass air flow sensor signal in MODE 1 with GST.

3.8 - 5.2 g·m/sec: at idling 16.0 - 21.5 g·m/sec: at 2,500 rpm

OK or NG

NG

OK >> GO TO 13.

>> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or grounds. Refer to EC-182, "DTC P0102, P0103 MAF SENSOR".

13. CHECK SYMPTOM MATRIX CHART

Check items on the rough idle symptom in EC-86, "Symptom Matrix Chart".

OK or NG

OK >> GO TO 14.

NG >> Repair or replace.

DTC P0300 - P0308 NO. 8 - 1 CYLINDER MISFIRE, MULTIPLE CYLINDER MISFIRE

14. ERASE THE 1ST TRIP DTC

Some tests may cause a 1st trip DTC to be set.

Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to <u>EC-62, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.

>> GO TO 15.

15. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

С

D

F

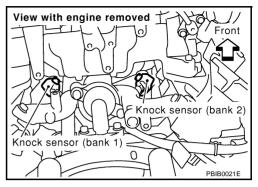
F

G

Н

K

L


DTC P0327, P0328, P0332, P0333 KS

PFP:22060

Component Description

ABS002J8

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

On Board Diagnosis Logic

4RS002 IQ

The MIL will not light up for these diagnoses.

DTC No.	Trouble Diagnosis Name	DTC Detected Condition	Possible Cause
P0327 0327 (bank 1)	Knock sensor circuit low	An excessively low voltage from the sensor	
P0332 0332 (bank 2)	input	is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0328 0328 (bank 1)	Knock sensor circuit high	An excessively high voltage from the sensor	Knock sensor
P0333 0333 (bank 2)	input	is sent to ECM.	

DTC Confirmation Procedure

ABS002JB

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

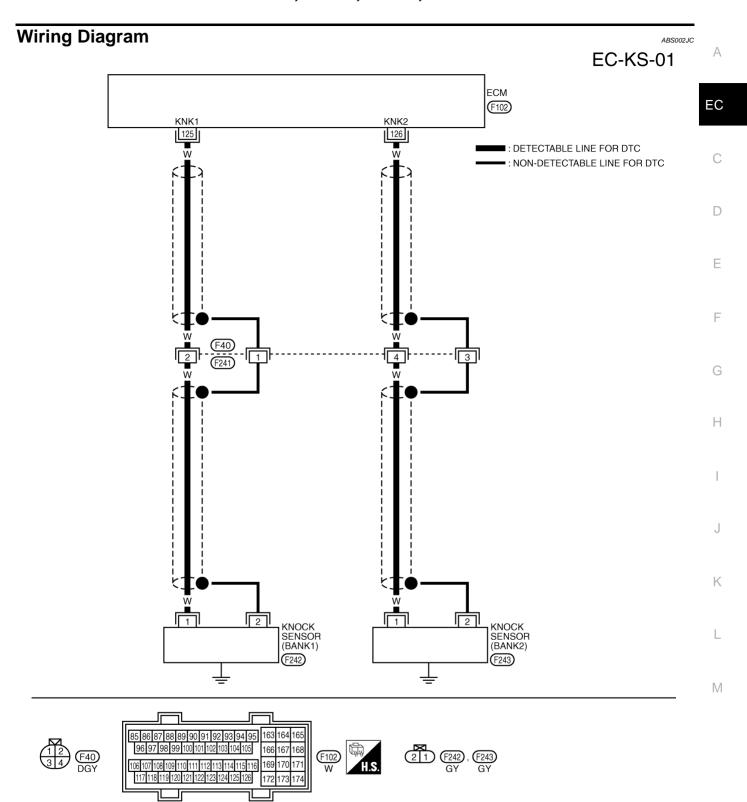
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and run it for at least 5 seconds at idle speed.
- 3. If 1st trip DTC is detected, go to EC-306, "Diagnostic Procedure"

DATA MONITOR


MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure WITH CONSULT-II above.

TBWM0021E

DTC P0327, P0328, P0332, P0333 KS

Specification data are reference values and are measured between each terminal and ground.

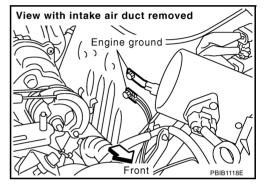
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
125 126	W	Knock sensor (bank 1) Knock sensor (bank 2)	[Engine is running] ● Idle speed	Approximately 2.5V

Diagnostic Procedure

ABS002JD


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- 1. Disconnect ECM harness connector.
- Check resistance between ECM terminals 125, 126 and ground. Refer to Wiring Diagram.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance: Approximately 530 - 590k Ω [at 20°C (68°F)]

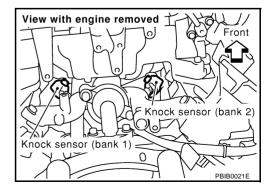
3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 7.

3. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II


- 1. Disconnect knock sensor harness connector.
- Check harness continuity between the following;
 ECM terminal 125 and knock sensor (bank 1) terminal 1,
 ECM terminal 126 and knock sensor (bank 2) terminal 1.
 Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connector F40, F241
- Harness for open or short between ECM and knock sensor

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. KNOCK SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT

- Disconnect harness connectors F40, F241.
- Check harness continuity between the following: harness connector F40 terminal 1 and ground harness connector F40 terminal 3 and ground. Refer to wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connector F40, F241
- Harness for open or short between ECM and ground.

>> Repair open circuit or short to power in harness or connectors.

7. CHECK KNOCK SENSOR

Refer to EC-307, "Component Inspection".

OK or NG

OK >> GO TO 8.

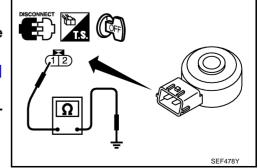
NG >> Replace knock sensor.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection KNOCK SENSOR


Check resistance between knock sensor terminal 1 and ground.

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance: Approximately 530 - 590k Ω [at 20°C (68°F)]

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use only new ones.

EC

F

Н

ABS002.JF

DTC P0327, P0328, P0332, P0333 KS

Removal and Installation KNOCK SENSOR

ABS002JF

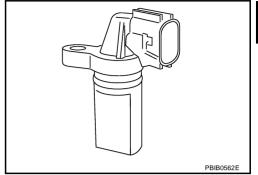
Refer to EM-80, "CYLINDER BLOCK" .

PFP:23731

ABS002JG

Α

EC


Component Description

The crankshaft position sensor (POS) is located on the cylinder block rear housing facing the gear teeth (cogs) of the signal plate at the end of the crankshaft. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet and Hall IC.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change. The changing gap causes the magnetic field near the sensor to change. Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

CONSULT-II Reference Value in Data Monitor Mode

ABS002JH

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
ENG SPEED	Run engine and compare the CONSULT-II value with tachometer indication.	Almost the same speed as the tachometer indication.

On Board Diagnosis Logic

3S002JI

Н

M

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
		 The crankshaft position sensor (POS) signal is not detected by the ECM during the first few seconds of engine cranking. 	Harness or connectors	
P0335 0335	Crankshaft position sensor (POS) circuit	 The proper pulse signal from the crankshaft position sensor (POS) is not sent to ECM while the engine is running. The crankshaft position sensor (POS) signal is not in the normal pattern during engine running. 	 (The sensor circuit is open or shorted) Crankshaft position sensor (POS) Signal plate 	

DTC Confirmation Procedure

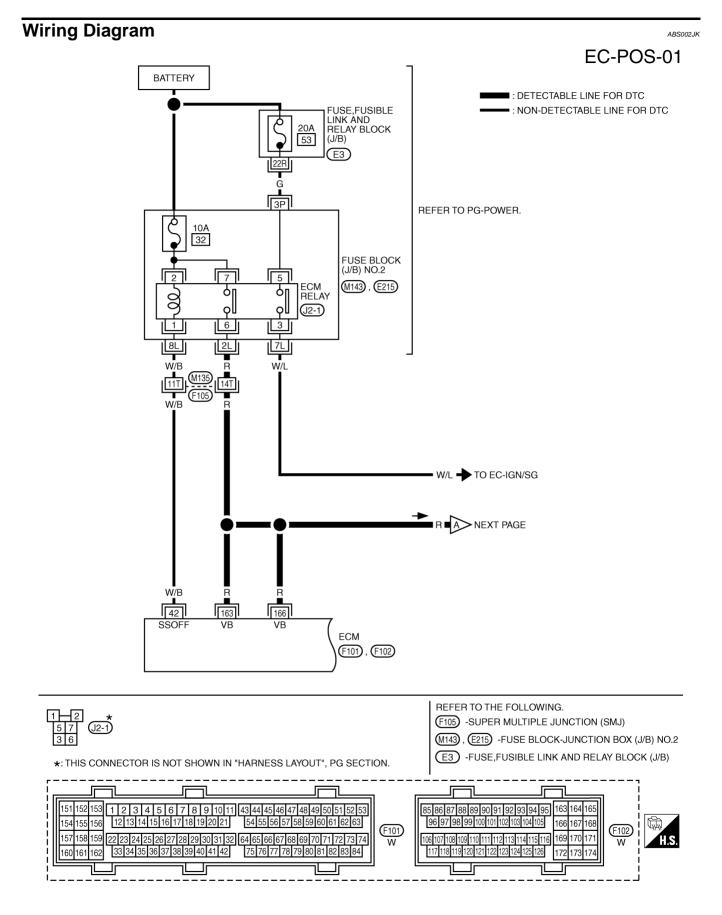
ABS002.IJ

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.


(II) WITH CONSULT-II

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- If 1st trip DTC is detected, go to <u>EC-313</u>, "<u>Diagnostic Procedure</u>".
 If 1st trip DTC is not detected, go to next step.
 - . Maintaining engine speed at more than 800 rpm for at least 5 seconds.
- 5. If 1st trip DTC is detected, go to EC-313, "Diagnostic Procedure"

DATA M	ONITOR	
MONITOR	MONITOR NO DTC	
ENG SPEED	XXX rpm	
		SEF058Y

WITH GST

Follow the procedure WITH CONSULT-II above.

TBWA0287E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
42	W/B	ECM relay	[Engine is running] [Ignition switch: OFF] • A few seconds after turning ignition switch OFF	0 - 1.0V	
42	VV/D	(Self shut-off)	[Ignition switch: OFF]More than a few seconds after turning ignition switch OFF	0 - 1.0V BATTERY VOLTAGE (11 - 14V) BATTERY VOLTAGE	
163 166	R R	Power supply for ECM	[Ignition switch ON]	BATTERY VOLTAGE (11 - 14V)	

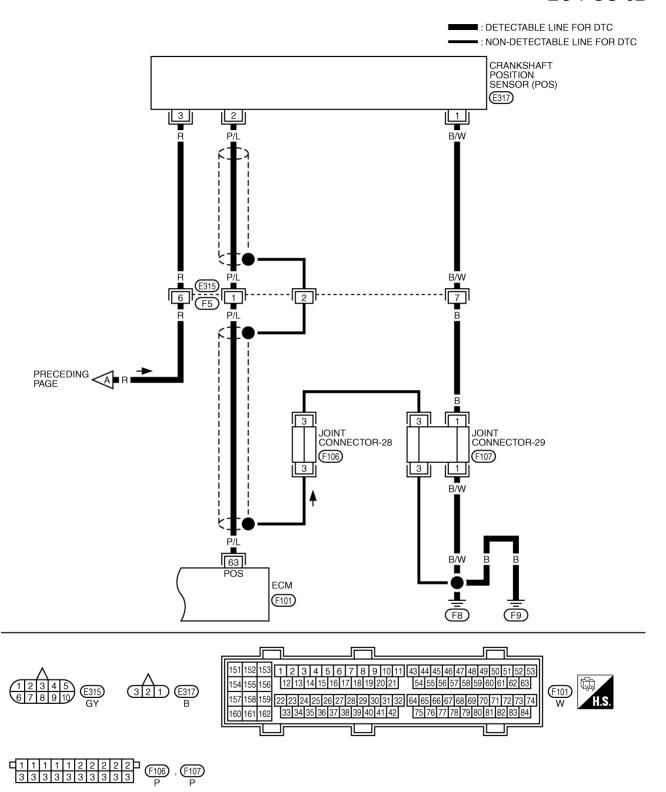
EC

Α

D

Е

F


G

Н

K

L

EC-POS-02

TBWA0288E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

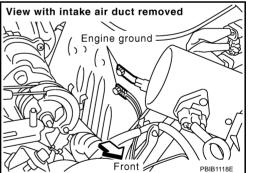
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
63	P/L	Crankshaft position sensor	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle. 	1.0 - 2.0V★
03	F/L	(POS)	[Engine is running] ● Engine speed: 2,000 rpm.	1.0 - 2.0V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

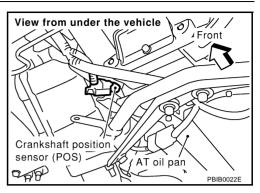
Α

D

F

'

G

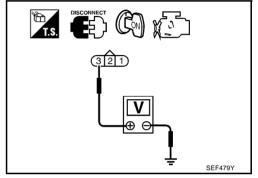

- H

ABS002JI

Κ

2. CHECK CRANKSHAFT POSITION (CKP) SENSOR (POS) POWER SUPPLY CIRCUIT

- Disconnect crankshaft position (CKP) sensor (POS) harness connector.
- 2. Turn ignition switch ON.


3. Check voltage between CKP sensor (POS) terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Harness connectors E315, F5
- Harness for open or short between crankshaft position sensor (POS) and ECM
- Harness for open or short between crankshaft position sensor (POS) and ECM relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK CKP SENSOR (POS) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between CKP sensor (POS) terminal 1 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E315, F5
- Joint connector-29
- Harness for open or short between crankshaft position sensor (POS) and ground

>> Repair open circuit or short to power in harness or connectors.

6. CHECK CKP SENSOR (POS) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT 1. Disconnect ECM harness connector. Check harness continuity between ECM terminal 63 and CKP sensor (POS) terminal 2. EC Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 8. NG >> GO TO 7. 7. DETECT MALFUNCTIONING PART Check the following. Harness connectors E315, F5 Harness for open or short between crankshaft position sensor (POS) and ECM >> Repair open circuit or short to ground or short to power in harness or connectors. 8. CHECK CKPS (POS) SHIELD CIRCUIT FOR OPEN AND SHORT Disconnect harness connectors E315, F5. Н Check harness continuity between harness connector F5 terminal 2 and ground. Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to power. OK or NG OK >> GO TO 10. NG >> GO TO 9. 9. DETECT MALFUNCTIONING PART Check the following. Harness connectors E315, F5 Joint connector-28 Joint connector-29 Harness for open or short between harness connector F5 and ground M >> Repair open circuit or short to power in harness or connectors. 10. CHECK CRANKSHAFT POSITION SENSOR (POS) Refer to EC-316, "Component Inspection". OK or NG OK >> GO TO 11. NG >> Replace crankshaft position sensor (POS). 11. CHECK GEAR TOOTH Visually check for chipping signal plate gear tooth. OK or NG

F

EC-315 Revision: 2004 October 2004 M45

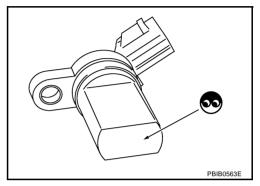
OK

NG

>> GO TO 12.

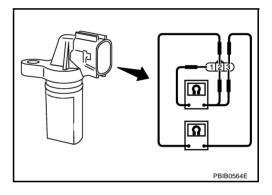
>> Replace the signal plate.

12. CHECK INTERMITTENT INCIDENT


Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection CRANKSHAFT POSITION SENSOR (POS)


1. Loosen the fixing bolt of the sensor.

- 2. Disconnect crankshaft position sensor (POS) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	

Removal and Installation CRANKSHAFT POSITION SENSOR (POS)

Refer to EM-25, "OIL PAN AND OIL STRAINER".

ABS002JN

ABS002JM

DTC P0340 CMP SENSOR (PHASE)

Component Description

PFP:23731

ABS002JO

Α

EC

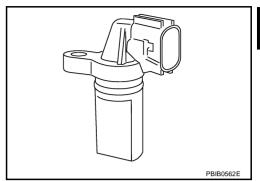
F

Н

M

The camshaft position sensor (PHASE) senses the protrusion of exhaust camshaft sprocket to identify a particular cylinder. The

When the crankshaft position sensor (POS) system becomes inoperative, the camshaft position sensor (PHASE) provides various controls of engine parts instead, utilizing timing of cylinder identification signals.


The sensor consists of a permanent magnet and Hall IC.

crankshaft position sensor (POS) senses the piston position.

When engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

On Board Diagnosis Logic

ABS002JP

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0340	Camshaft position sensor	 The cylinder No. signal is not sent to ECM for the first few seconds during engine cranking. The cylinder No. signal is not sent to ECM during engine running. The cylinder No. signal is not in the normal pattern during engine running. 	 Harness or connectors
0340	(PHASE) circuit		(The sensor circuit is open or shorted) Camshaft position sensor (PHASE) Starter motor (Refer to <u>SC-9</u>.) Starting system circuit (Refer to <u>SC-9</u>.) Dead (Weak) battery

DTC Confirmation Procedure

ABS002JR

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

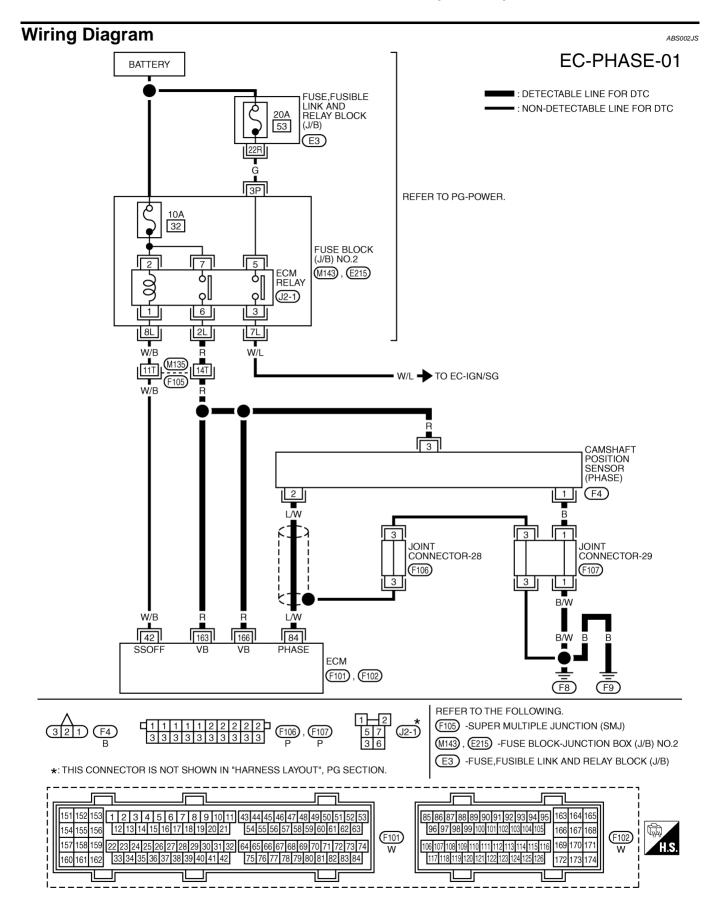
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 4. If 1st trip DTC is detected, go to EC-319, "Diagnostic Procedure"

If 1st trip DTC is not detected, go to next step.


- Maintain engine speed at more than 800 rpm for at least 5 seconds.
- 6. If 1st trip DTC is detected, go to EC-319, "Diagnostic Procedure"

DATA M	ONIT	OR
MONITOR		NO DTC
ENG SPEED	Х	XX rpm

WITH GST

Follow the procedure WITH CONSULT-II above.

Revision: 2004 October EC-317 2004 M45

TBWA0289E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
84	L/W	Camshaft position sensor	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle. 	1.0 - 4.0V★	
04	L)vv	(PHASE)	[Engine is running] ● Engine speed: 2,000 rpm.	1.0 - 4.0 V★	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK STARTING SYSTEM

Turn ignition switch to START position.

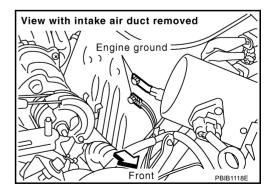
Does the engine turn over?

Does the starter motor operate?

Yes or No

Yes >> GO TO 2.

No >> Check starting system. (Refer to <u>SC-9</u>, "STARTING SYSTEM".)


2. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

OK or NG

OK >> GO TO 3.

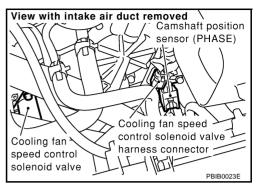
NG >> Repair or replace ground connections.

EC

Α

 \Box

F

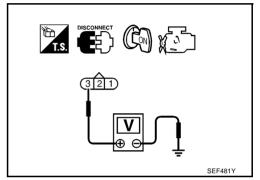

G

Н

ABS002JT

3. CHECK CAMSHAFT POSITION (CMP) SENSOR (PHASE) POWER SUPPLY CIRCUIT

- Disconnect camshaft position (CMP) sensor (PHASE) harness connector.
- 2. Turn ignition switch ON.


Check voltage between CMP sensor (PHASE) terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F105, M135
- Harness for open or short between ECM and camshaft position sensor (PHASE)
- Harness for open or short between ECM relay and camshaft position sensor (PHASE)
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK CMP SENSOR (PHASE) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between CMP sensor (PHASE) terminal 1 and ground.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-29
- Harness for open or short between camshaft position sensor (PHASE) and ground
 - >> Repair open circuit or short to power in harness or connectors.

$7.\,$ CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 84 and CMP sensor (PHASE) terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

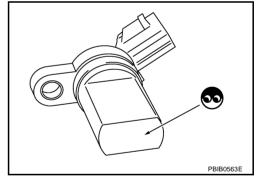
8. CHECK CAMSHAFT POSITION SENSOR (PHASE)

Refer to EC-321, "Component Inspection".

OK or NG

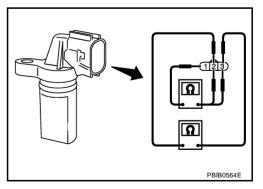
OK >> GO TO 9.

NG >> Replace camshaft position sensor (PHASE).


9. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection **CAMSHAFT POSITION SENSOR (PHASE)**

- 1. Loosen the fixing bolt of the sensor.
- Disconnect camshaft position sensor (PHASE) harness connector
- Remove the sensor.
- 4. Visually check the sensor for chipping.

Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	

ABS002JV

Removal and Installation **CAMSHAFT POSITION SENSOR (PHASE)**

Refer to EM-38, "TIMING CHAIN".

EC-321 Revision: 2004 October 2004 M45

EC

 \Box

F

Н

ABS002JU

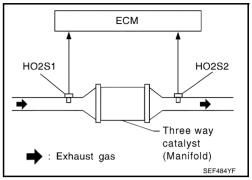
DTC P0420. P0430 THREE WAY CATALYST FUNCTION

DTC P0420, P0430 THREE WAY CATALYST FUNCTION

PFP:20905

ABS002JW

On Board Diagnosis Logic


sensors 1 and 2.

The ECM monitors the switching frequency ratio of heated oxygen

A three way catalyst (Manifold) with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2 switching frequency will increase.

When the frequency ratio of heated oxygen sensors 1 and 2 approaches a specified limit value, the three way catalyst (Manifold) malfunction is diagnosed.

Malfunction is detected when three way catalyst (Manifold) does not operate properly, three way catalyst (Manifold) does not have enough oxygen storage capacity.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0420 0420 (Bank 1)		Three way catalyst (Manifold) does not operate properly.	Three way catalyst (Manifold)Exhaust tubeIntake air leaks
P0430 0430 (Bank 2)	Catalyst system efficiency below threshold	 properly. Three way catalyst (Manifold) does not have enough oxygen storage capacity. 	Fuel injectorFuel injector leaksSpark plugImproper ignition timing

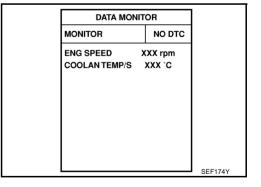
DTC Confirmation Procedure

ABS002JX

NOTE:

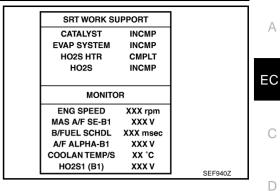
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II


TESTING CONDITION:

Do not hold engine speed for more than the specified minutes below.

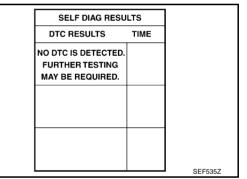
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).


If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).

7. Open engine hood.

DTC P0420. P0430 THREE WAY CATALYST FUNCTION

- Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-PORT" mode with CONSULT-II.
- Rev engine up to 2,000 to 3,000 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely. If "INCMP" of "CATALYST" changed to "CMPLT", go to step 12.
- 10. Wait 5 seconds at idle.



11. Rev engine up to 2,000 to 3,000 rpm and maintain it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take approximately 5 minutes).

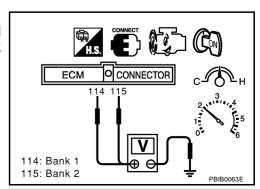
If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest from step 1.

		1
SRT WORK SUPPORT		
CATALYST	CMPLT	1
EVAP SYSTEM	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
MONITO	R	
ENG SPEED	XXX rpm	1
MAS A/F SE-B1	XXX V	
B/FUEL SCHDL	XXX msec	
A/F ALPHA-B1	XXX V	
COOLAN TEMP/S	XX °C	
HO2S1 (B1)	XXX V	
		•

- 12. Select "SELF-DIAG RESULTS" mode with CONSULT-II.
- 13. Confirm that the 1st trip DTC is not detected. If the 1st trip DTC is detected, go to EC-324, "Diagnostic Procedure".

Overall Function Check

ABS002JY


Use this procedure to check the overall function of the three way catalyst 1. During this check, a 1st trip DTC might not be confirmed.

CAUTION:

Always drive vehicle at a safe speed.

WITH GST

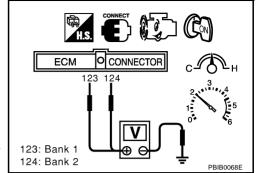
- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for 1 minute under no load. 3.
- 4. Let engine idle for 1 minute.
- Set voltmeters probes between ECM terminals 114 [HO2S1 (bank 1) signal], 115 [HO2S1 (bank 2) signal] and ground, and ECM terminals 123 [HO2S2 (bank 1) signal], 124 [HO2S2 (bank 2) signall and ground.
- 6. Keep engine speed at 2,000 rpm constant under no load.

Α

F

Н

DTC P0420, P0430 THREE WAY CATALYST FUNCTION


 Make sure that the voltage switching frequency (high & low) between ECM terminals 123 and ground, or 124 and ground is very less than that of ECM terminals 114 and ground, or 115 and ground.

Switching frequency ratio = A/B

A: Heated oxygen sensor 2 voltage switching frequency
B: Heated oxygen sensor 1 voltage switching frequency

This ratio should be less than 0.75.

If the ratio is greater than above, it means three way catalyst does not operate properly. Go to $\underline{\text{EC-324}}$, "Diagnostic Procedure".

NOTE:

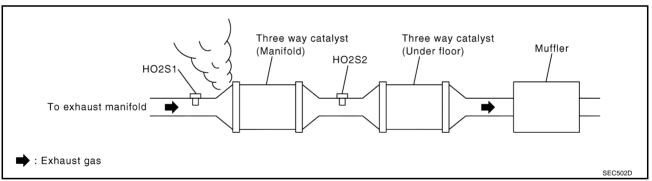
If the voltage at terminal 114 or 115 does not switch periodically more than 5 times within 10 seconds at step 5, perform trouble diagnosis for DTC P0133, P0153 first. (See EC-224.)

Diagnostic Procedure

ABS002JZ

1. CHECK EXHAUST SYSTEM

Visually check exhaust tubes and muffler for dent.


OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- Listen for an exhaust gas leak before the three way catalyst (Manifold).

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

DTC P0420, P0430 THREE WAY CATALYST FUNCTION

4. CHECK IGNITION TIMING

Check the following items. Refer to EC-81, "Basic Inspection".

Items	Specifications
Ignition timing	12° ± 5° BTDC (in P or N position)
Target idle speed	650 ± 50 rpm (in P or N position)

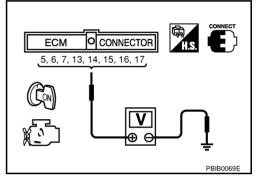
OK or NG

OK >> GO TO 5.

NG >> Follow the <u>EC-81</u>, "Basic Inspection".

5. CHECK INJECTORS

- 1. Stop engine and then turn ignition switch ON.
- 2. Check voltage between ECM terminals 5, 6, 7, 13, 14, 15, 16, 17 and ground with CONSULT-II or tester.

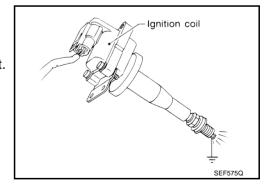

Voltage: Battery voltage

3. Refer to Wiring Diagram for Injectors, EC-662.

OK or NG

OK >> GO TO 6.

NG >> Perform <u>EC-665</u>, "<u>Diagnostic Procedure</u>" .


6. CHECK IGNITION SPARK

- Turn ignition switch OFF.
- 2. Remove ignition coil assembly from rocker cover.
- 3. Connect a known-good spark plug to the ignition coil assembly.
- 4. Disconnect all injector harness connectors.
- 5. Place end of spark plug against a suitable ground and crank engine.
- 6. Check for spark.

OK or NG

OK >> GO TO 7.

NG >> Check ignition coil with power transistor and their circuit. Refer to <u>EC-649</u>, "IGNITION SIGNAL".

EC

С

D

F

F

G

Н

DTC P0420, P0430 THREE WAY CATALYST FUNCTION

7. CHECK INJECTOR

- 1. Turn ignition switch OFF.
- Remove injector assembly.
 Refer to <u>EM-31</u>, "<u>FUEL INJECTOR AND FUEL TUBE</u>".
 Keep fuel hose and all injectors connected to injector gallery.
- 3. Disconnect all ignition coil harness connectors.
- 4. Reconnect all injector harness connectors.
- Turn ignition switch ON.
 Make sure fuel does not drip from injector.

OK or NG

OK (Does not drip.)>>GO TO 8.

NG (Drips.)>>Replace the injector(s) from which fuel is dripping.

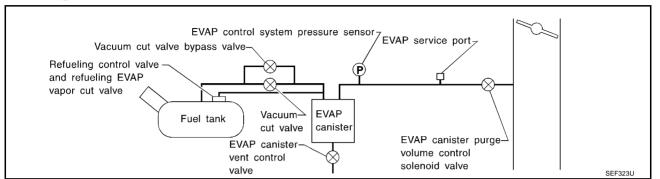
8. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

Trouble is fixed.>>INSPECTION END

Trouble is not fixed.>>Replace three way catalyst assembly.

DTC P0441 EVAP CONTROL SYSTEM


PFP:14950

System Description

ABS002K0

NOTE:

If DTC P0441 is displayed with other DTC such as P2122, P2123, P2127, P2128 or P2138, first perform trouble diagnosis for other DTC.

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

ABS002K1

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a malfunction is determined.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			EVAP canister purge volume control solenoid valve stuck closed
		EVAP control system pressure sensor and the circuit	
		EVAP control system does not operate properly, EVAP control system has a leak	Loose, disconnected or improper connection of rubber tube
P0441	EVAP control system		Blocked rubber tube
0441 incorrect purge flow	between intake manifold and EVAP control system pressure sensor.	Cracked EVAP canister	
		EVAP canister purge volume control solenoid valve circuit	
			Accelerator pedal position sensor
			Blocked purge port
			EVAP canister vent control valve

DTC Confirmation Procedure

ABS002K2

CAUTION:

Always drive vehicle at a safe speed.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

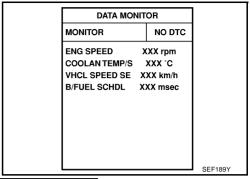
TESTING CONDITION:

Always perform test at a temperature of more than 5°C (41°F).

WITH CONSULT-II

Start engine and warm it up to normal operating temperature.

EC-327 Revision: 2004 October 2004 M45


EC

Α

F

Н

- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 70 seconds.
- 4. Select "PURG FLOW P0441" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CONSULT-II.
- Touch "START". If "COMPLETED" is displayed, go to step 7.
- When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

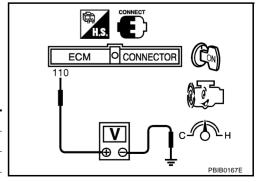
Selector lever	Suitable position
VHCL SPEED SE	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,800 rpm
B/FUEL SCHDL	1.0 - 10.0 msec
COOLAN TEMP/S	70 - 100°C (158 - 212°F)

PURG FLOW P0441 OUT OF CONDITION			PURG FLOW F	20441		PURG FLOW P0441	
			TESTING				
MONITOR	1	•	MONITOR	l	•	COMPLETED	
ENG SPEED	XXX rpm	,	ENG SPEED	XXX rpm			
B/FUEL SCHDL	XXX msec		B/FUEL SCHDL	XXX msec			
COOLAN TEMP/S	xxx .c		COOLAN TEMP/S	xxx °c			
VHCL SPEED SE	XXX km/h		VHCL SPEED SE	XXX km/h			

If "TESTING" is not changed for a long time, retry from step 2.

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-329, "Diagnostic Procedure".

Overall Function Check


ABS002K3

Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Lift up drive wheels.
- 2. Start engine (VDC switch OFF) and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and wait at least 70 seconds.
- 5. Set voltmeter probes to ECM terminals 110 (EVAP control system pressure sensor signal) and ground.
- 6. Check EVAP control system pressure sensor value at idle speed and note it.
- Establish and maintain the following conditions for at least 1 minute.

Air conditioner switch	ON
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Selector lever	Any position other than P, N or R

8. Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.

9. If NG, go to EC-329, "Diagnostic Procedure".

Diagnostic Procedure

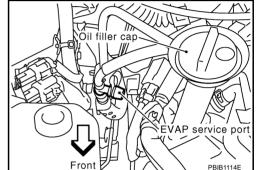
ABS002K4

1. CHECK EVAP CANISTER

- 1. Turn ignition switch OFF.
- 2. Check EVAP canister for cracks.

OK or NG

OK (With CONSULT-II)>>GO TO 2.


OK (Without CONSULT-II)>>GO TO 3.

NG >> Replace EVAP canister.

2. CHECK PURGE FLOW

(I) With CONSULT-II

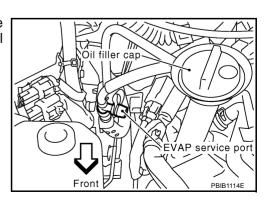
- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. For the location of EVAP service port, refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING".
- 2. Start engine and let it idle.
- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Rev engine up to 2,000 rpm.

5.	Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG
	VOL CONT/V" opening and check vacuum existence.

PURG VOL CONT/V	Vacuum
100%	Should exist.
0%	Should not exist.

OK or NG

OK >> GO TO 7.


NG >> GO TO 4.

ACTIVE TES	Т	
PURG VOL CONT/V	0 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
		PBIB01

3. CHECK PURGE FLOW

(II) Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Stop engine.
- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install

EC

Α

D

F

G

Н

J

K

vacuum gauge. For the location of EVAP service port, refer to <u>EC-693, "EVAPORATIVE EMISSION LINE</u> DRAWING" .

- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum gauge indication when revving engine up to 2,000 rpm.

Vacuum should exist.

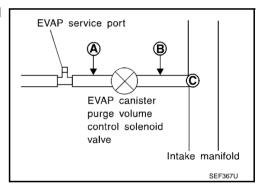
6. Release the accelerator pedal fully and let engine idle.

Vacuum should not exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 4.

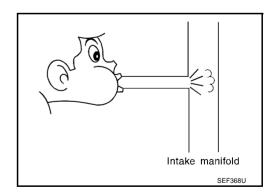
4. CHECK EVAP PURGE LINE


- 1. Turn ignition switch OFF.
- Check EVAP purge line for improper connection or disconnection. Refer to <u>EC-693</u>, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 5. NG >> Repair it.

5. CHECK EVAP PURGE HOSE AND PURGE PORT


- Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.
- 2. Blow air into each hose and EVAP purge port C.

3. Check that air flows freely.

OK or NG

OK (With CONSULT-II)>>GO TO 6.
OK (Without CONSULT-II)>>GO TO 7.
NG >> Repair or clean hoses and/or purge port.

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(II) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

		1
ACTIVE TES		
PURG VOL CONT/V	0 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
		PBIB0147E

7. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-550, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 9.

>> Replace EVAP control system pressure sensor. NG

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION

Refer to DTC Confirmation Procedure for DTC P0452 EC-356, P0453 EC-363.

OK or NG

OK >> GO TO 10.

>> Replace EVAP control system pressure sensor.

10. CHECK RUBBER TUBE FOR CLOGGING

- Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

>> GO TO 11. OK

NG >> Clean the rubber tube using an air blower.

11. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-557, "Component Inspection".

OK or NG

>> GO TO 12. OK

NG >> Replace EVAP canister vent control valve.

EC-331 Revision: 2004 October 2004 M45

EC

F

12. CHECK EVAP PURGE LINE

Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks. Refer to $\underline{\text{EC-693}}$, $\underline{\text{"EVAPORATIVE EMISSION LINE DRAWING"}}$.

OK or NG

OK >> GO TO 13. NG >> Replace it.

13. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 14.

14. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0442 EVAP CONTROL SYSTEM

PFP:14950

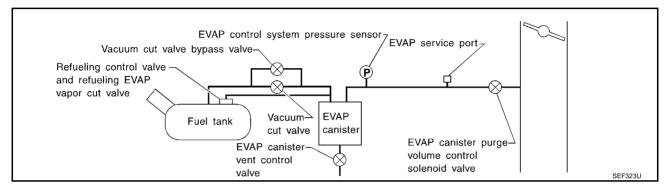
ABS002K5

Α

EC

 \Box

On Board Diagnosis Logic


NOTE:

If DTC P0442 is displayed with P1448, first perform trouble diagnosis for DTC P1448. (See <u>EC-558</u>.)

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions.

The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause			
			Incorrect fuel tank vacuum relief valve			
			Incorrect fuel filler cap used			
			Fuel filler cap remains open or fails to close.			
			Foreign matter caught in fuel filler cap.			
		Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.				
			 Foreign matter caught in EVAP canister vent control valve. 			
			EVAP canister or fuel tank leaks			
			EVAP purge line (pipe and rubber tube) leaks			
		EVAP purge line rubber tube bent				
P0442	small leak detected	control system does not operate prop-	Blocked or bent rubber tube to EVAP control system pressure sensor			
0442	(negative pressure)		Loose or disconnected rubber tube			
			EVAP canister vent control valve and the circuit			
				EVAP canister purge volume control solenoid valve and the circuit		
			Fuel tank temperature sensor			
			missing or damaged • Water separator			O-ring of EVAP canister vent control valve is missing or damaged
• Wate						Water separator
					EVAP canister is saturated with water	
			EVAP control system pressure sensor			
			Fuel level sensor and the circuit			
			Refueling control valve			
			ORVR system leaks			

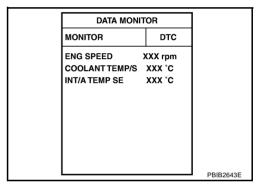
CAUTION:

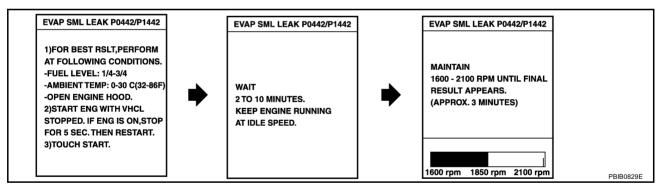
- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

ABS002K6

NOTF:

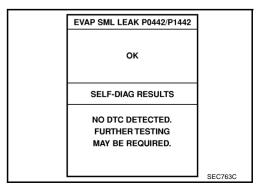

 If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure that the following conditions are met.
 COOLAN TEMP/S: 0 70°C (32 158°F)
 INT/A TEMP SE: 0 30°C (32 86°F)
- 5. Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.


NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to EC-81, "Basic Inspection".

Make sure that "OK" is displayed.
 If "NG" is displayed, refer to <u>EC-335, "Diagnostic Procedure"</u>.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

■ WITH GST

NOTE:

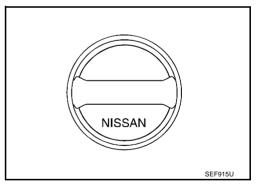
Be sure to read the explanation of EC-60, "Driving Pattern" before driving vehicle.

- Start engine.
- 2. Drive vehicle according to EC-60, "Driving Pattern".
- 3. Stop vehicle.
- 4. Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine.

It is not necessary to cool engine down before driving.

- Drive vehicle again according to the EC-60, "Driving Pattern". 7.
- Stop vehicle.
- Select "MODE 3" with GST.
- If P0442 is displayed on the screen, go to EC-335, "Diagnostic Procedure".
- If P0441 is displayed on the screen, go to EC-329, "Diagnostic Procedure".
- If P1442 is displayed on the screen, go to EC-537, "Diagnostic Procedure".
- If P0441, P0442 and P1442 are not displayed on the screen, go to the following step.
- 10. Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure


1. CHECK FUEL FILLER CAP DESIGN

- Turn ignition switch OFF.
- Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

>> GO TO 4. NG

EC-335 Revision: 2004 October 2004 M45

EC

Α

F

Н

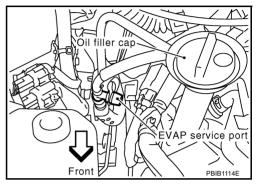
ABS002K7

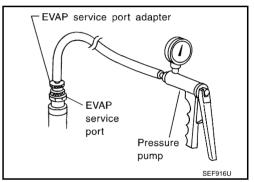
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-695, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)".

OK or NG

OK >> GO TO 5.


NG >> Replace fuel filler cap with a genuine one.

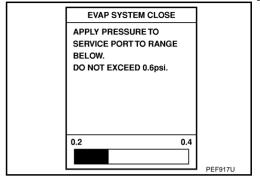

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely. For the location of EVAP service port, refer to $\underline{\text{EC-693}}$, $\underline{\text{"EVAPORATIVE EMISSION LINE DRAWING"}}$.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-II>>GO TO 6. Without CONSULT-II>>GO TO 7.

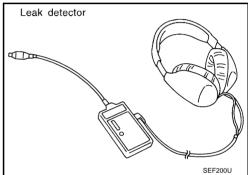

6. CHECK FOR EVAP LEAK

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING"

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

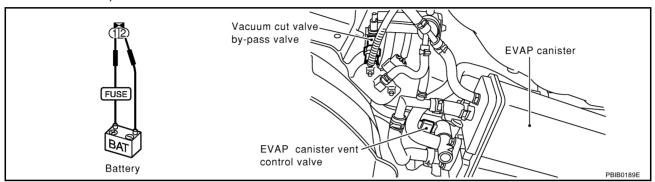
EC

D

Е

0

Н


K

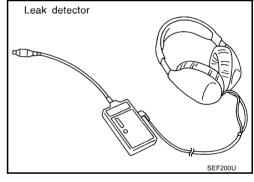
L

7. CHECK FOR EVAP LEAK

(R) Without CONSULT-II

- Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12 volts until the end of test.)

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK WATER SEPARATOR

Refer to EC-341, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace water separator.

9. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

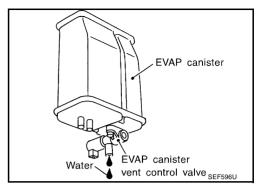
Refer to EC-558, "DTC Confirmation Procedure".

OK or NG

OK >> GO TO 10.

NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

10. CHECK IF EVAP CANISTER SATURATED WITH WATER


- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 11.

No (With CONSULT-II)>>GO TO 13.

No (Without CONSULT-II)>>GO TO 14.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 13.

OK (Without CONSULT-II)>>GO TO 14.

NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

>> Repair hose or replace EVAP canister.

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

I ACTIVE IES	,,	
PURG VOL CONT/V	0 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
		PBIB0147E

ACTIVE TEST

EC

С

F

Н

ı

M

Revision: 2004 October EC-339 2004 M45

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 17. NG >> GO TO 15.

15. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-24, "Vacuum Hose Drawing" .

OK or NG

OK >> GO TO 16.

NG >> Repair or reconnect the hose.

16. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-550, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace EVAP canister purge volume control solenoid valve.

17. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-287, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace fuel level sensor unit.

18. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-361, "Component Inspection".

OK or NG

OK >> GO TO 19.

NG >> Replace EVAP control system pressure sensor.

19. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to <u>EC-693</u>, "<u>EVAPORATIVE EMISSION LINE DRAWING</u>".

OK or NG

OK >> GO TO 20.

NG >> Repair or reconnect the hose.

20. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 21.

$\overline{21}$. check refueling evap vapor line

Check refuelling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-698, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)"

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses and tubes.

22. CHECK SIGNAL LINE AND RECIRCULATION LINE

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 23.

NG >> Repair or replace hose, tube or filler neck tube.

23. CHECK REFUELING CONTROL VALVE

Refer to EC-701, "Component Inspection".

OK or NG

OK >> GO TO 24.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

24. CHECK FUEL LEVEL SENSOR

Refer to DI-19. "CHECK FUEL LEVEL SENSOR UNIT".

OK or NG

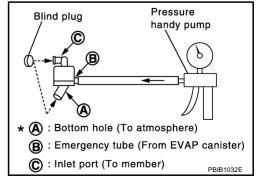
OK >> GO TO 25.

NG >> Replace fuel level sensor unit.

25. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection WATER SEPARATOR

1. Check visually for insect nests in the water separator air inlet.

- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE:

• Do not disassemble water separator.

EC

Α

F

F

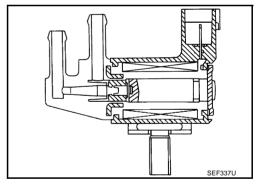
Н

ABS002K8

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE PFP:14920

Description SYSTEM DESCRIPTION

ABS002K9


Sensor	Input Signal to ECM	ECM function	Actuator		
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed				
Mass air flow sensor	Amount of intake air				
Engine coolant temperature sensor	Engine coolant temperature				
Ignition switch	Start signal	EVAP canister	EVAP canister purge volume		
Throttle position sensor	Throttle position	purge flow control	control solenoid valve		
Accelerator pedal position sensor	Accelerator pedal position				
Heated oxygen sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)				
Fuel tank temperature sensor	Fuel temperature in fuel tank				
Wheel sensor*	Vehicle speed				

^{*:} This signal is sent to the ECM through CAN communication.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

ABS002KA

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0%
PURG VOL C/V	Selector lever: P or N		
	Air conditioner switch: OFF	2,000 rpm	-
	No load		

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0444 0444	EVAP canister purge volume control solenoid valve circuit open	An excessively low voltage signal is sent to ECM through the valve	 Harness or connectors (The solenoid valve circuit is open or shorted.) EVAP canister purge volume control solenoid valve
P0445	EVAP canister purge volume	An excessively high voltage signal is sent	Harness or connectors (The solenoid valve circuit is shorted.)

DTC Confirmation Procedure

shorted

control solenoid valve circuit

On Board Diagnosis Logic

ABS002KC

EC

D

F

F

Н

NOTE:

0445

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

EC-343

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

to ECM through the valve

(II) WITH CONSULT-II

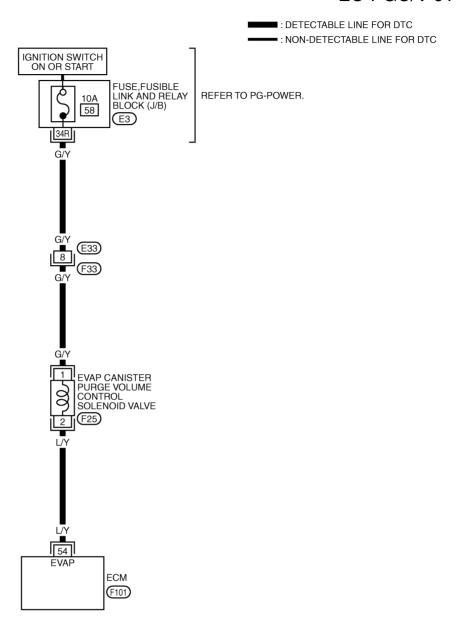
- Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for at least 13 seconds.
- If 1st trip DTC is detected, go to EC-345, "Diagnostic Procedure"

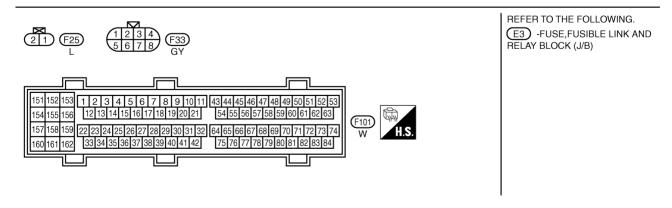
DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

EVAP canister purge volume control

solenoid valve

WITH GST


Follow the procedure WITH CONSULT-II above.


M

Wiring Diagram

ABS002KD

EC-PGC/V-01

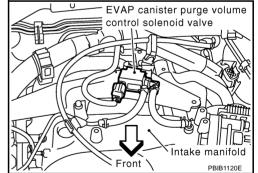
TBWA0290E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		EVAP canister purge volume	[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)★ DESCRIPTION SO MS/DW PBIB0050E
54	LY	control solenoid valve	 [Engine is running] ● Engine speed is about 2,000 rpm (More than 100 seconds after starting engine). 	BATTERY VOLTAGE (11 - 14V)* PBIB0051E

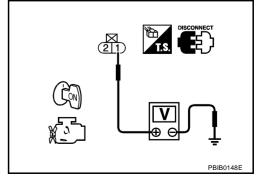

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

ABS002KF

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-CUIT

- Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

Revision: 2004 October **EC-345** 2004 M45

EC

Α

D

F

F

Н

K

L

$\overline{2}$. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E33, F33
- Fuse, fusible link and relay block (J/B) connector E3
- 10A fuse
- Harness for open or short between EVAP canister purge volume control solenoid valve and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIR-CUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 54 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)>>GO TO 4.

OK (Without CONSULT-II)>>GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

ACTIVE TEST	
PURG VOL CONT/V	0 %
MONITOR	
ENG SPEED	XXX rpm
HO2S1 MNTR (B1)	LEAN
HO2S1 MNTR (B2)	LEAN
A/F ALPHA-B1	XXX %
A/F ALPHA-B2	XXX %

5. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-347, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace EVAP canister purge volume control solenoid valve.

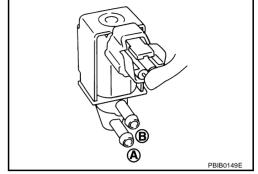
6. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Revision: 2004 October **EC-346** 2004 M45

Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE


ABS002KF

Α

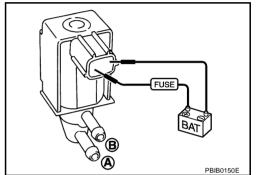
(P) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition (PURG VOL CONT/V value)	Air passage continuity between A and B
100%	Yes
0%	No

EC

С


D

Е

⋈ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Removal and Installation EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EM-18, "INTAKE MANIFOLD".

ABS002KG

K

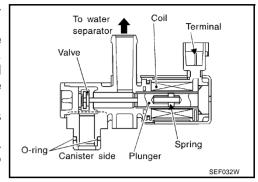
Н

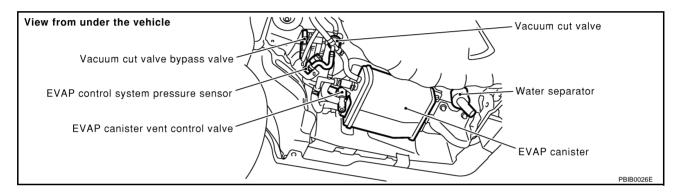
ı

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

PFP:14935

Component Description


ABS002KH


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System" diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

ABS002KI

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	• Ignition switch: ON	OFF

On Board Diagnosis Logic

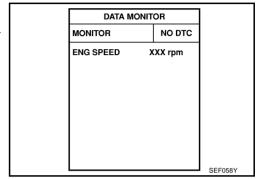
ABS002KJ

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0447 0447	EVAP canister vent control valve circuit open	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	 Harness or connectors (The valve circuit is open or shorted.) EVAP canister vent control valve

DTC Confirmation Procedure

ABS002KK

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 8 seconds.
- 4. If 1st trip DTC is detected, go to EC-351, "Diagnostic Procedure"

WITH GST

Follow the procedure WITH CONSULT-II above.

EC

Α

D

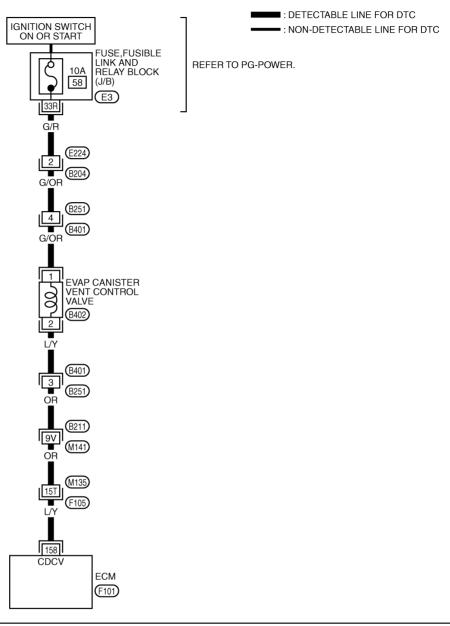
F

С

F

G

Н


K

L

Wiring Diagram

ABS002KL

EC-VENT/V-01

TBWA0291E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

-	TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
-	158	L/Y	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

$2. \ \mathsf{CHECK} \ \mathsf{EVAP} \ \mathsf{CANISTER} \ \mathsf{VENT} \ \mathsf{CONTROL} \ \mathsf{VALVE} \ \mathsf{CIRCUIT}$

(II) With CONSULT-II

- 1. Turn ignition switch OFF and then turn ON.
- 2. Select "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.
- 4. Check for operating sound of the valve. Clicking noise should be heard.

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

ACTIVE TEST		
VENT CONTROL/V	OFF	
MONITOR	₹ .	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	xxx v	
		PBIB0151E

EC

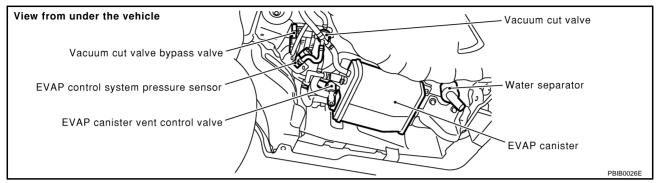
Α

D

ABS002KM

Е

G

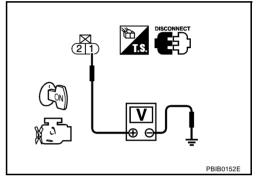

Н

|

L

$\overline{3}$. CHECK EVAP CANISTER VENT CONTROL VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- Disconnect EVAP canister vent control valve harness connector.



- 3. Turn ignition switch ON.
- 4. Check voltage between EVAP canister vent control valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E224, B204
- Harness connectors B251, B401
- Fuse, fusible link and relay block (J/B) connector E3
- 10A fuse
- Harness for open or short between EVAP canister vent control valve and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK EVAP CANISTER VENT CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 158 and EVAP canister vent control valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F105, M135
- Harness connectors M141. B211
- Harness connectors B251, B401
- Harness for open or short between EVAP canister vent control valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 8.

NG >> Clean the rubber tube using an air blower.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-353, "Component Inspection".

OK or NG

OK >> GO TO 9.

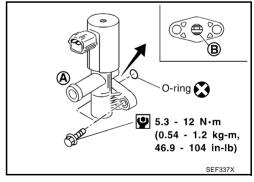
NG >> Replace EVAP canister vent control valve.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CANISTER VENT CONTROL VALVE


With CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for being rusted.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.

EC

D

F

r

Н

ABS002KN

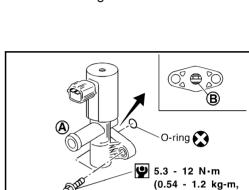
_

- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time.

 Make sure new O-ring is installed properly.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.


If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 7. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 8. Perform step 6 again.

⋈ Without CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion B of EVAP canister vent control valve for being rusted.

O-ring 🔀

ACTIVE TEST

MONITOR ENG SPEED OFF

XXX rpm

XXX %

XXX %

XXX V

xxx v

PBIB0153E

46.9 - 104 in-lb)

SEF337X

VENT CONTROL/V

A/F ALPHA-B1

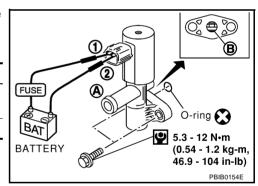
A/F ALPHA-B2

HO2S1 (B1)

HO2S1 (B2)

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.


Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

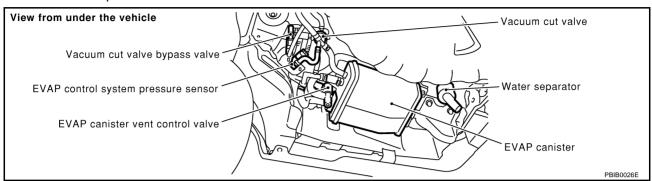
- 4. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 5. Perform step 3 again.

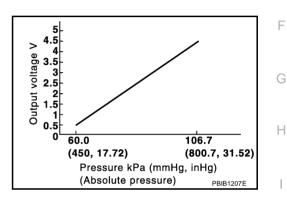
DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR

PFP:25085

Component Description

ABS002KO


Α


EC

D

F

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

CONSULT-II Reference Value in Data Monitor Mode

ABS002KP

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

ABS002KQ

NOTE

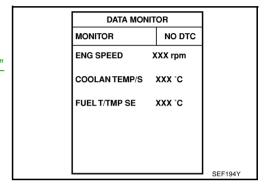
If DTC P0452 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to $\underline{\text{EC-531}}$.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	M
P0452 0452	EVAP control system pressure sensor low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor 	

DTC Confirmation Procedure

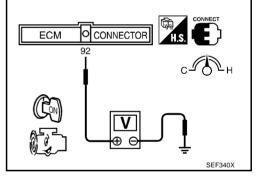
ABS002KF

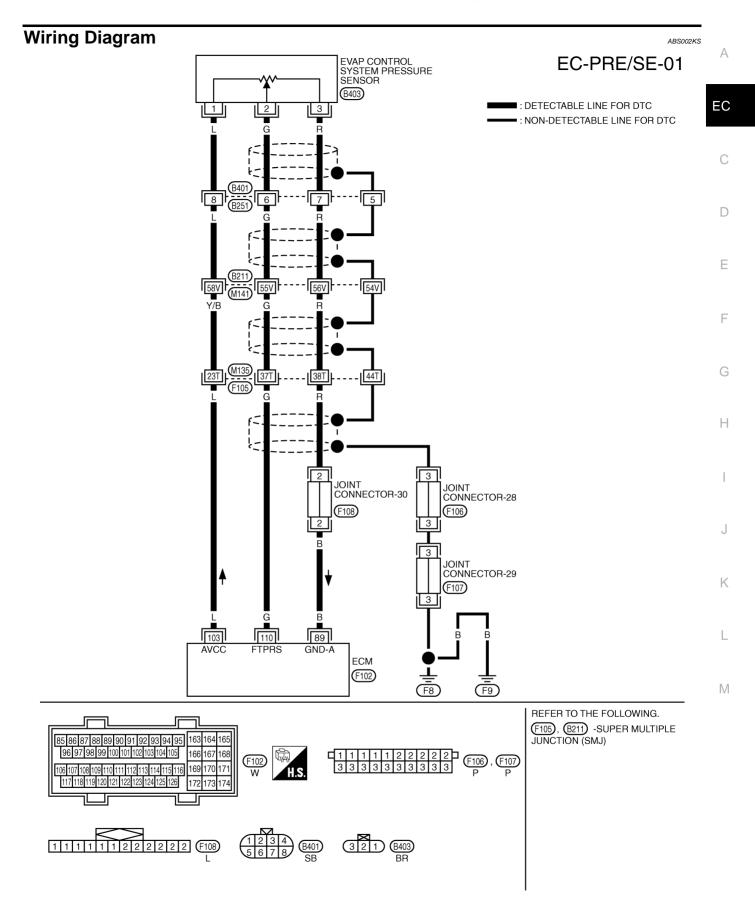
NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of more than 5°C (41°F).


(P) WITH CONSULT-II


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- Start engine and wait at least 20 seconds.
 If 1st trip DTC is detected, go to <u>EC-358</u>, "<u>Diagnostic Procedure</u>"

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that voltage between ECM terminal 92 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- Select "MODE 7" with GST.
 If 1st trip DTC is detected, go to <u>EC-358</u>, "<u>Diagnostic Procedure</u>"

TBWA0292E

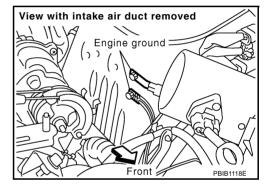
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
89	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V
110	G	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V

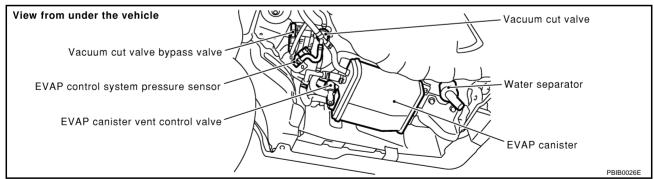
Diagnostic Procedure


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

OK >> GO TO 2.


NG >> Repair or replace ground connections.

ABS002KT

2. CHECK CONNECTOR

1. Disconnect EVAP control system pressure sensor harness connector.

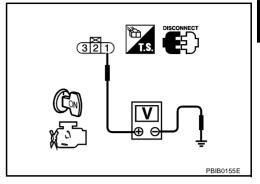
Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch ON.
- 2. Check voltage between EVAP control system pressure sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B401, B251
- Harness connectors B211, M141
- Harness connectors M135, F105
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between EVAP control system pressure sensor terminal 3 and ECM terminal 89.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B401, B251
- Harness connectors B211, M141
- Harness connectors M135, F105
- Joint connector-30
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

C

F

G

Н

1

J

K

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 110 and EVAP control system pressure sensor terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B401, B251
- Harness connectors B211, M141
- Harness connectors M135, F105
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect harness connectors B401, B251.
- Check the following continuity between harness connector B251 terminal 5 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 11. NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B401, B251
- Harness connectors B211, M141
- Harness connectors M135, F105
- Joint connector-28
- Joint connector-29
- Harness for open or short between harness connector B251 terminal 5 and ground
 - >> Repair open circuit or short to power in harness or connectors.

11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-361, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP control system pressure sensor.

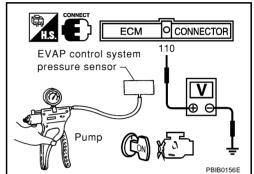
Revision: 2004 October **EC-360** 2004 M45

12. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CONTROL SYSTEM PRESSURE SENSOR


ABS002KU

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch ON.
- 5. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- 6. Check voltage between ECM terminal 110 and ground with CONSULT-II or tester.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200 mmHg, -7.87)	2.1 to 2.5V lower than above value

CAUTION:

Discard any EVAP control system pressure sensor which has dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such a concrete floor; use a new one.

7. If NG, replace EVAP control system pressure sensor.

EC

Е

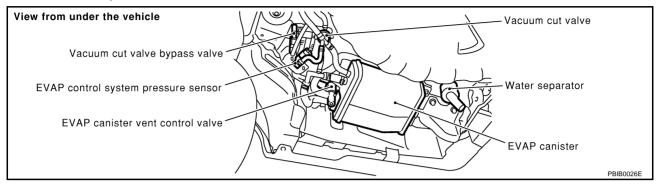
D

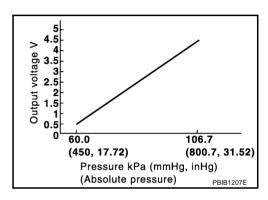
Н

J

K

L


DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR


PFP:25085

Component Description

ABS002KV

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

CONSULT-II Reference Value in Data Monitor Mode

ABS002KW

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

ABS002KX

NOTE:

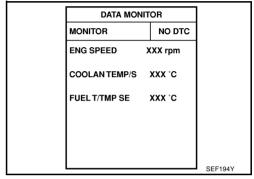
If DTC P0453 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to $\underline{\text{EC-531}}$.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0453 0453	EVAP control system pressure sensor high input	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor EVAP canister vent control valve EVAP canister Water separator Rubber hose from EVAP canister vent control valve to water separator

DTC Confirmation Procedure

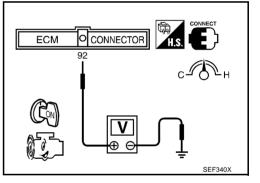
ABS002KY

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of more than 5°C (41°F).


(P) WITH CONSULT-II

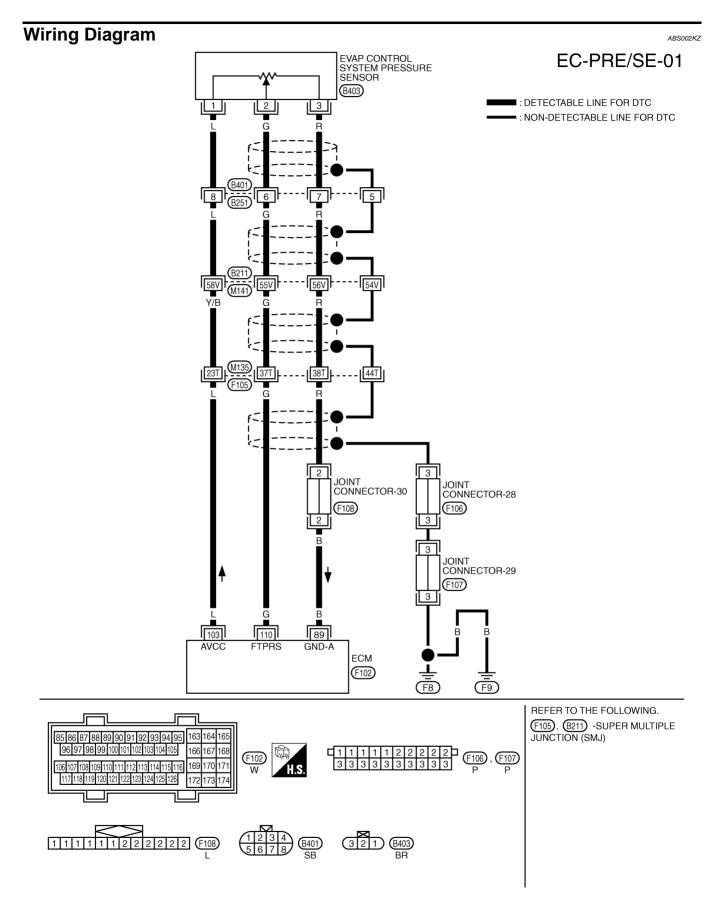
- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "FUEL T/TEMP SE" is more than 0°C (32°F).
- 6. Wait at least 10 seconds.
- 7. If 1st trip DTC is detected, go to EC-365, "Diagnostic Procedure"

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that voltage between ECM terminal 92 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Wait at least 10 seconds.
- Select "MODE 7" with GST.
 If 1st trip DTC is detected, go to <u>EC-365</u>, "<u>Diagnostic Procedure</u>"

EC

Α


D

F

Н

J

Κ

TBWA0292E

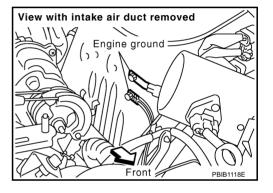
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

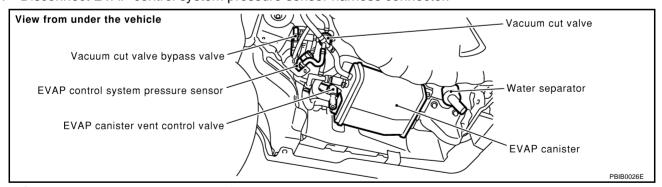
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
89	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V
110	G	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V

Diagnostic Procedure


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK CONNECTOR

1. Disconnect EVAP control system pressure sensor harness connector.

Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

EC

Α

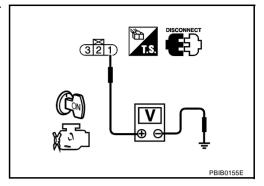
D

-

ABS002L0

Н

N


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch ON.
- 2. Check voltage between EVAP control system pressure sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B401, B251
- Harness connectors B211, M141
- Harness connectors M135, F105
- Harness for open or short between EVAP control system pressure sensor and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between EVAP control system pressure sensor terminal 3 and ECM terminal 89.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

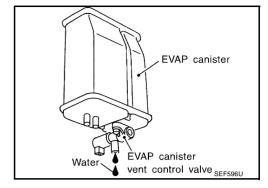
6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B401, B251
- Harness connectors B211, M141
- Harness connectors M135, F105
- Joint connector-30
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT Check harness continuity between ECM terminal 110 and EVAP control system pressure sensor terminal 1 EC Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 9. D NG >> GO TO 8 8. DETECT MALFUNCTIONING PART Check the following. Harness connectors B401, B251 F Harness connectors B211, M141 Harness connectors M135, F105 Harness for open or short between EVAP control system pressure sensor and ECM >> Repair open circuit or short to ground or short to power in harness or connectors. 9. CHECK RUBBER TUBE Н Disconnect rubber tube connected to EVAP canister vent control valve. Check the rubber tube for clogging, vent and kinked. OK or NG OK >> GO TO 10. NG >> Clean the rubber tube using an air blower. 10. Check evap canister vent control valve Refer to EC-353, "Component Inspection". OK or NG OK >> GO TO 11. NG >> Replace EVAP canister vent control valve. 11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR Refer to EC-369, "Component Inspection". OK or NG OK >> GO TO 12. NG >> Replace EVAP control system pressure sensor. 12. CHECK WATER SEPARATOR Refer to EC-341, "Component Inspection". OK or NG OK >> GO TO 13.

NG


>> Replace water separator.

13. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 14. No >> GO TO 16.

14. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

15. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

16. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect harness connectors B401, B251.
- Check continuity between harness connector B251 terminal 5 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 18. NG >> GO TO 17

17. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B401, B251
- Harness connectors B211, M141
- Harness connectors M135, F105
- Joint connector-28
- Joint connector-29
- Harness for open or short between harness connector B251 terminal 5 and ground

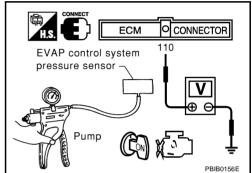
>> Repair open circuit or short to power in harness or connectors.

18. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CONTROL SYSTEM PRESSURE SENSOR


ABS002L1

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Install a vacuum pump to EVAP control system pressure sensor.
- 4. Turn ignition switch ON.
- 5. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- 6. Check voltage between ECM terminal 110 and ground with CONSULT-II or tester.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200 mmHg, -7.87)	2.1 to 2.5V lower than above value

CAUTION:

Discard any EVAP control system pressure sensor which has dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such a concrete floor; use a new one.

7. If NG, replace EVAP control system pressure sensor.

EC

Е

 D

0

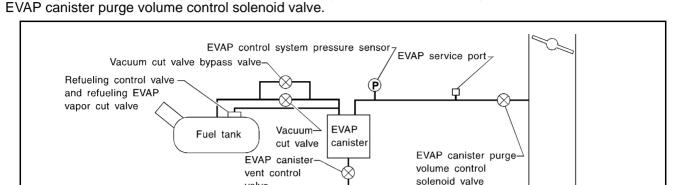
Н

J

1 1

DTC P0455 EVAP CONTROL SYSTEM

PFP:14950


On Board Diagnosis Logic

ABS002L2

SEF323U

NOTE:

If DTC P0455 is displayed with P1448, first perform trouble diagnosis for DTC P1448. (See <u>EC-558</u>.) This diagnosis detects a very large leak (fuel filler cap fell off etc.) in EVAP system between the fuel tank and

valve

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0455 0455	EVAP control system gross leak detected	EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system does not operate properly.	 Fuel filler cap remains open or fails to close. Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged. EVAP control system pressure sensor Refueling control valve ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

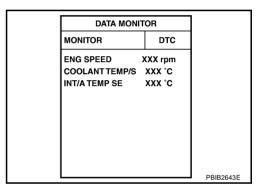
DTC Confirmation Procedure

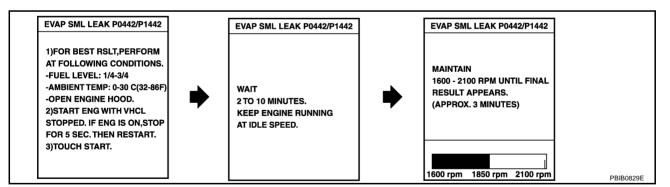
BS0021.3

CAUTION:

Never remove fuel filler cap during the DTC Confirmation Procedure.

NOTE:


- If DTC P0455 is displayed with P1448, first perform trouble diagnosis for DTC P1448. (See <u>EC-558</u>.)
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

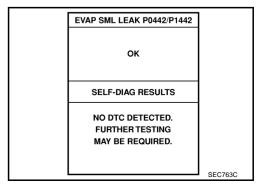

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedures.

(II) WITH CONSULT-II

- 1. Tighten fuel filler cap securely until ratcheting sound is heard.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that the following conditions are met. COOLAN TEMP/S: 0 70°C (32 158°F) INT/A TEMP SE: 0 60°C (32 140°F)
- 6. Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

NOTE:


If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to EC-81, "Basic Inspection".

7. Make sure that "OK" is displayed.

If "NG" is displayed, select "SELF-DIAG RESULTS" mode and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to EC-372, "Diagnostic Procedure".

If P0442 is displayed, go to $\underline{\text{EC-335}}$, "Diagnostic Procedure".

If P1442 is displayed, go to EC-537, "Diagnostic Procedure".

Revision: 2004 October **EC-371** 2004 M45

EC

Α

D

F

Н

K

L

V

IVI

WITH GST

NOTE:

Be sure to read the explanation of EC-60, "Driving Pattern" before driving vehicle.

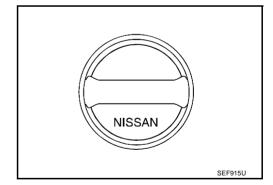
- Start engine.
- 2. Drive vehicle according to <a>EC-60, "Driving Pattern".
- 3. Stop vehicle.
- 4. Select "MODE 1" with GST.
 - If SRT of EVAP system is not set yet, go to the following step.
 - If SRT of EVAP system is set, the result will be OK.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine.

It is not necessary to cool engine down before driving.

- 7. Drive vehicle again according to the EC-60, "Driving Pattern".
- 8. Stop vehicle.
- 9. Select "MODE 3" with GST.
 - If P0455 is displayed on the screen, go to EC-372, "Diagnostic Procedure".
 - If P0442 is displayed on the screen, go to EC-335, "Diagnostic Procedure".
 - If P0441 is displayed on the screen, go to EC-329, "Diagnostic Procedure".
 - If P1442 is displayed on the screen, go to <u>EC-537</u>, "<u>Diagnostic Procedure</u>".
 - If P0455, P0441, P0442 and P1442 are not displayed on the screen, go to the following step.
- 10. Select "MODE 1" with GST.
 - If SRT of EVAP system is set, the result will be OK.
 - If SRT of EVAP system is not set, go to step 5.

Diagnostic Procedure

1. CHECK FUEL FILLER CAP DESIGN


ABS002L4

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-695, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

5. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection.

Refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 6.

NG >> Repair or reconnect the hose.

6. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

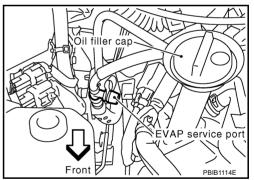
>> GO TO 7.

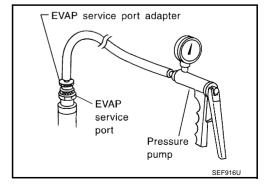
7. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

Refer to EC-558, "DTC Confirmation Procedure".

OK or NG

OK >> GO TO 8.


NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.


8. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-II>>GO TO 9. Without CONSULT-II>>GO TO 10.

EC

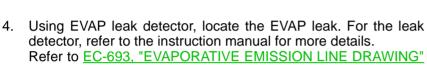
D

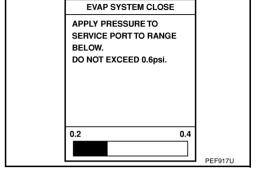
Е

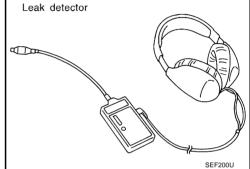
Н

J

ı


9. CHECK FOR EVAP LEAK

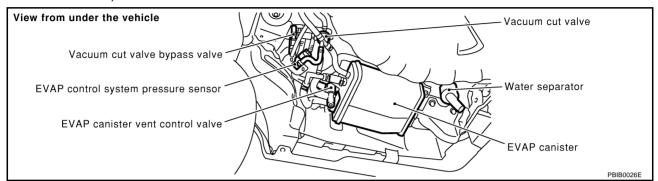

(II) With CONSULT-II


- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

OK or NG


OK >> GO TO 11.

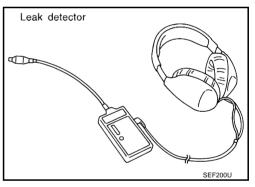
NG >> Repair or replace.

10. CHECK FOR EVAP LEAK

W Without CONSULT-II

- Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12 volts until the end of test.)

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 12.

NG >> Repair or replace.

11. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

ACTIVE TES	Т	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
HO2S1 MNTR (B1)	LEAN	
•		PBIB0828E

EC

_

.

Н

1

Κ

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

₩ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 15. NG >> GO TO 13.

13. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-24, "Vacuum Hose Drawing".

OK or NG

OK (With CONSULT-II)>>GO TO 14. OK (Without CONSULT-II)>>GO TO 15.

NG >> Repair or reconnect the hose.

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

ACTIVE TES	T
PURG VOL CONT/V	XXX %
MONITOR	
ENG SPEED	XXX rpm
A/F ALPHA-B1	XX %
HO2S1 MNTR (B1)	LEAN

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-550, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-291, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-369, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace EVAP control system pressure sensor.

Revision: 2004 October EC-376 2004 M45

18. CHECK REFUELING EVAP VAPOR LINE

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-698, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)"

OK or NG

OK >> GO TO 19.

NG >> Repair or replace hoses and tubes.

19. CHECK SIGNAL LINE AND RECIRCULATION LINE

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 20.

NG >> Repair or replace hose, tube or filler neck tube.

20. CHECK REFUELING CONTROL VALVE

Refer to EC-701, "Component Inspection".

OK or NG

OK >> GO TO 21.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

21. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

Α

F

D

_

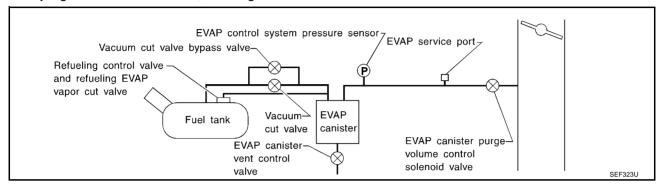
Н

J

K

L

DTC P0456 EVAP CONTROL SYSTEM


PFP:14950

On Board Diagnosis Logic

ABS002L5

This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using the intake manifold vacuum in the same way as conventional EVAP small leak diagnosis.

- If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected.
- If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected.
- If ECM judges there are no leaks, the diagnosis will be OK.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0456 0456	Evaporative emission control system very small leak (negative pressure check)	EVAP system has a very small leak. EVAP system does not operate properly.	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Blocked or bent rubber tube to EVAP control system pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged Water separator EVAP control system pressure sensor Refueling control valve ORVR system leaks Fuel level sensor and the circuit Foreign matter caught in EVAP canister purge volume control solenoid valve

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.

Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

ARSON2L6

Α

EC

D

F

Н

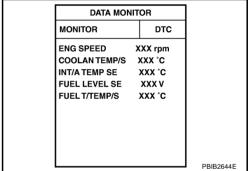
NOTE:

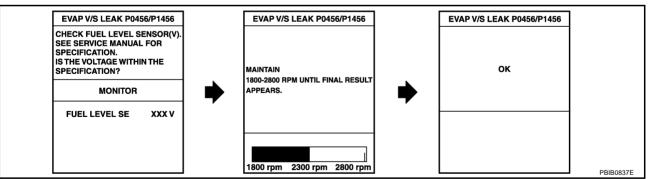
- If DTC P0456 is displayed with P0442, first perform trouble diagnosis for DTC P0456.
- After repair, make sure that the hoses and clips are installed properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Refilled or drained the fuel.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(R) WITH CONSULT-II


- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure the following conditions are met.


FUEL LEVEL SE: 0.25 - 1.4V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) **FUEL T/TMP SE: 0 - 35°C (32 - 95°F)** INT/A TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Select "EVAP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

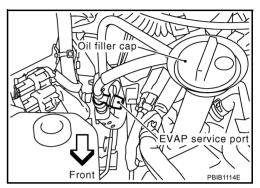
Make sure that "OK" is displayed. If "NG" is displayed, refer to EC-381, "Diagnostic Procedure".

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to EC-81, "Basic Inspection".
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

EC-379 Revision: 2004 October 2004 M45

Overall Function Check


WITH GST

ABS002L7

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

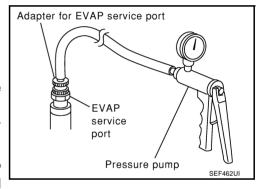
CAUTION:

- Never use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP service port.

- 2. Set the pressure pump and a hose.
- 3. Also set a vacuum gauge via 3-way connector and a hose.
- 4. Turn ignition switch ON.
- 5. Connect GST and select MODE 8.
- 6. Using MODE 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).
- Apply pressure and make sure the following conditions are satisfied

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and

the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg).


If NG, go to EC-381, "Diagnostic Procedure".

If OK, go to next step.

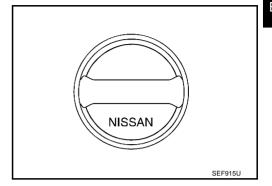
- 8. Disconnect GST.
- 9. Start engine and warm it up to normal operating temperature.
- 10. Turn ignition switch OFF and wait at least 10 seconds.
- 11. Restart engine and let it idle for 90 seconds.
- 12. Keep engine speed at 2,000 rpm for 30 seconds.
- 13. Turn ignition switch OFF.

NOTE:

For more information, refer to GST Instruction Manual.

Diagnostic Procedure

1. CHECK FUEL FILLER CAP DESIGN


ABS002L8

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-695, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

EC

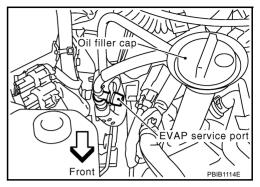
Α

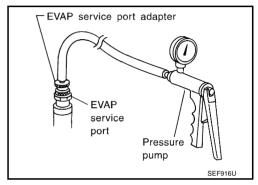
C

D

Е

Н


K

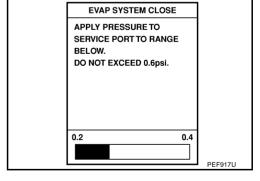

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely. For the location of EVAP service port, refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING".

CAUTION:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-II>>GO TO 6. Without CONSULT-II>>GO TO 7.

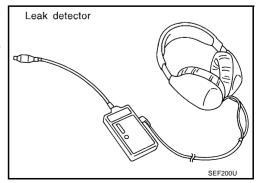

6. CHECK FOR EVAP LEAK

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

CAUTION:

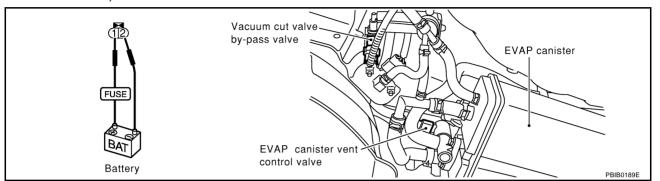
- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



 Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-693</u>, "<u>EVAPORATIVE EMISSION LINE DRAWING</u>"

OK or NG

OK >> GO TO 8.

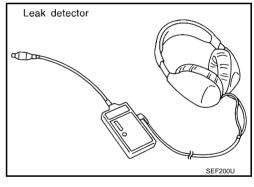

NG >> Repair or replace.

7. CHECK FOR EVAP LEAK

W Without CONSULT-II

- Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12 volts until the end of test.)

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK WATER SEPARATOR

Refer to EC-386, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace water separator.

9. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

Refer to EC-558, "DTC Confirmation Procedure".

OK or NG

OK >> GO TO 10.

NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

EC

Е

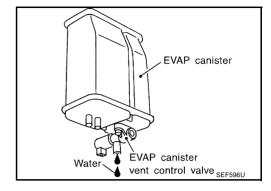
1

Н

J

K

10. CHECK IF EVAP CANISTER SATURATED WITH WATER


- Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 11.

No (With CONSULT-II)>>GO TO 13.

No (Without CONSULT-II)>>GO TO 14.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 13.

OK (Without CONSULT-II)>>GO TO 14.

NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

>> Repair hose or replace EVAP canister.

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

ACTIVE TES	ST	
PURG VOL CONT/V	0 %	
MONITOR	1	
ENG SPEED	XXX rpm	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
		PBIB0147E

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION **W** Without CONSULT-II Start engine and warm it up to normal operating temperature. EC 2. Stop engine. 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. 4. Start engine and let it idle for at least 80 seconds. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. OK or NG OK >> GO TO 17. NG >> GO TO 15. 15. CHECK VACUUM HOSE F Check vacuum hoses for clogging or disconnection. Refer to EC-24, "Vacuum Hose Drawing". OK or NG OK >> GO TO 16. NG >> Repair or reconnect the hose. 16. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE Refer to EC-550, "Component Inspection". OK or NG Н OK >> GO TO 17. NG >> Replace EVAP canister purge volume control solenoid valve. 17. CHECK FUEL TANK TEMPERATURE SENSOR Refer to EC-291, "Component Inspection". OK or NG OK >> GO TO 18. NG >> Replace fuel level sensor unit. 18. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR Refer to EC-369, "Component Inspection". OK or NG OK >> GO TO 19. NG >> Replace EVAP control system pressure sensor. M 19. check evap purge line Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING". OK or NG OK >> GO TO 20. >> Repair or reconnect the hose. 20. CLEAN EVAP PURGE LINE Clean EVAP purge line (pipe and rubber tube) using air blower.

Revision: 2004 October **EC-385** 2004 M45

>> GO TO 21.

$\overline{21}$. check refueling evap vapor line

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-698, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)"

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses and tubes.

22. CHECK SIGNAL LINE AND RECIRCULATION LINE

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 23.

NG >> Repair or replace hose, tube or filler neck tube.

23. CHECK REFUELING CONTROL VALVE

Refer to EC-701, "Component Inspection".

OK or NG

OK >> GO TO 24.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

24. CHECK FUEL LEVEL SENSOR

Refer to DI-19. "CHECK FUEL LEVEL SENSOR UNIT".

OK or NG

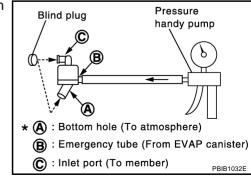
OK >> GO TO 25.

NG >> Replace fuel level sensor unit.

25. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection WATER SEPARATOR

ABS002L9

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- Check that A and C are not clogged by blowing air into B with A, and then C plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE:

• Do not disassemble water separator.

DTC P0460 FUEL LEVEL SENSOR

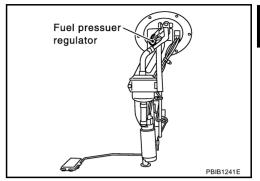
PFP:25060

Component Description

ABS002LA

Α

EC


F

Н

M

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

ABS002LB

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0460 0460	Fuel level sensor circuit noise	Even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.	Harness or connectors (The sensor circuit is open or shorted)Fuel level sensor

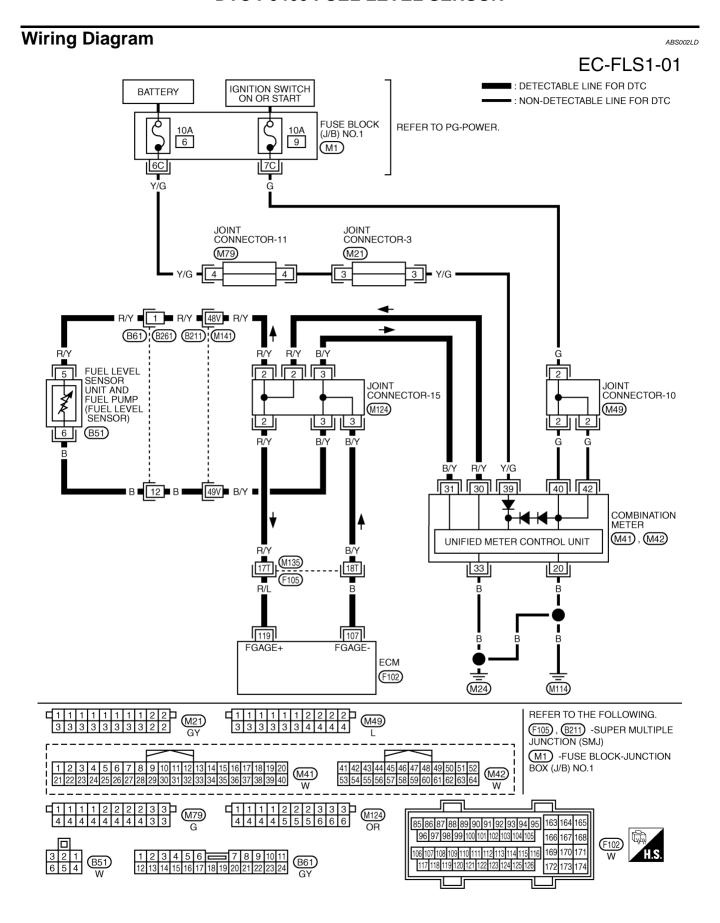
DTC Confirmation Procedure

ABS002LC

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(A) WITH CONSULT-II


- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait maximum of 2 consecutive minutes.
- If 1st trip DTC is detected, go to <u>EC-389</u>, "<u>Diagnostic Procedure</u>"

DATA MON	NITOR	
MONITOR	NO DTC	
FUEL T/TMP SE	XXX °C	
FUEL LEVEL SE	xxx v	

WITH GST

Follow the procedure WITH CONSULT-II above.

Revision: 2004 October EC-387 2004 M45

TBWA0293E

Specification data are reference values and are measured between each terminal and ground.

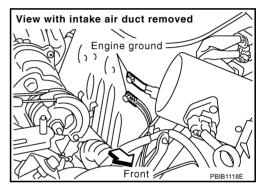
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
107	В	Fuel level sensor ground	[Engine is running] ● Idle speed	Approximately 0V
119	R/L	Fuel level sensor	[Ignition switch: ON]	Approximately 0 - 4.8V Output voltage varies with fuel level.

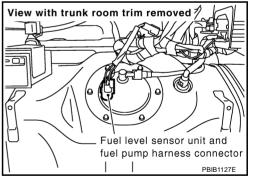
Diagnostic Procedure

1. CHECK GROUND CONNECTIONS


1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

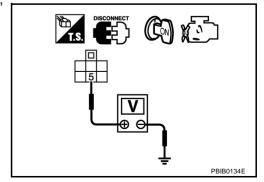
OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between "fuel level sensor unit and fuel pump" terminal 5 and ground with CONSULT-II or a tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

EC

Α

D

ABS002LE

F

G

Н

J

Κ

L

$\overline{3}$. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M141, B211
- Harness connectors B61, B261
- Joint connector-15
- Harness for open or short between combination meter and "fuel level sensor unit and fuel pump"
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect combination meter harness connectors.
- 3. Check harness continuity between "fuel level sensor unit and fuel pump" terminal 6 and combination meter terminal 31. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M141, B211
- Harness connectors B61, B261
- Joint connector-15
- Harness for open or short between combination meter and "fuel level sensor unit and fuel pump"
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between the following;

ECM terminal 119 and "fuel level sensor unit and fuel pump" terminal 5,

ECM terminal 107 and "fuel level sensor unit and fuel pump" terminal 6.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Joint connector-15
- Harness for open or short between ECM and "fuel level sensor and fuel pump"

>> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK FUEL LEVEL SENSOR Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY". OK or NG EC OK >> GO TO 9. NG >> Replace fuel level sensor unit. 9. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". >> INSPECTION END Removal and Installation ABS002LF **FUEL LEVEL SENSOR** Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

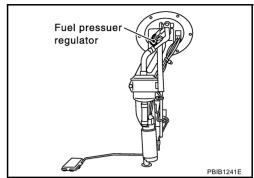
D

Е

F

G

Н


PFP:25060

Component Description

ABS002LG

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

ABS002LH

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0461 0461	Fuel level sensor circuit range/performance	The output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.	Harness or connectors (The sensor circuit is open or shorted)Fuel level sensor

Overall Function Check

ABS0021

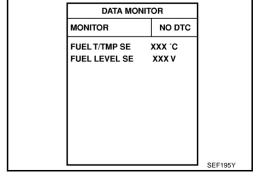
Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to <u>FL-9</u>, "FUEL TANK".

TESTING CONDITION:

Before starting overall function check, preparation of draining fuel and refilling fuel is required.

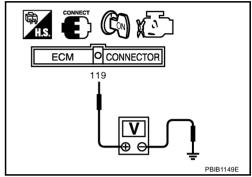

(P) WITH CONSULT-II

NOTE:

Start from step 10, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- 2. Release fuel pressure from fuel line, refer to <a>EC-46, "FUEL PRESSURE RELEASE".
- Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- Turn ignition switch OFF and wait at least 10 seconds then turn ON.
- Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-II.
- 7. Check "FUEL LEVEL SE" output voltage and note it.
- Select "FUEL PUMP" in "ACTIVE TEST" mode with CONSULT-II.
- 9. Touch "ON" and drain fuel approximately 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10. Check "FUEL LEVEL SE" output voltage and note it.
- 11. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 12. Check "FUEL LEVEL SE" output voltage and note it.
- 13. Confirm whether the voltage changes more than 0.03V during step 7 to 10 and 10 to 12.

If NG, check the fuel level sensor, refer to <u>DI-19, "CHECK FUEL LEVEL SENSOR UNIT"</u>.



WITH GST

NOTE:

Start from step 8, if it is possible to confirm that the fuel cannot be drained by 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- 2. Release fuel pressure from fuel line, refer to EC-46, "FUEL PRESSURE RELEASE".
- Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- Turn ignition switch OFF.
- 6. Set voltmeters probe between ECM terminal 119 (fuel level sensor signal) and ground.
- 7. Turn ignition switch ON.
- 8. Check voltage between ECM terminal 119 and ground and note it.
- 9. Drain fuel by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 10. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- Confirm that the voltage between ECM terminal 119 and ground changes more than 0.03V during step 8 10.
 If NG, check component of fuel level sensor, refer to <u>DI-19</u>, "CHECK FUEL LEVEL SENSOR UNIT".

EC

Α

D

C

F

F

G

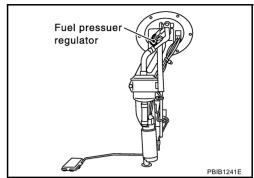
Н

K

L

DTC P0462, P0463 FUEL LEVEL SENSOR

DTC P0462, P0463 FUEL LEVEL SENSOR


PFP:25060

Component Description

ABS002LJ

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

ARSONAL K

ECM receives two signals from the fuel level sensor circuit.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit.

This diagnosis indicates the former, to detect open or short circuit malfunction.

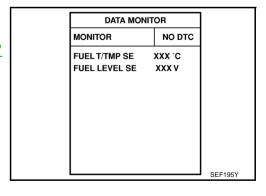
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0462 0462	Fuel level sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted) Fuel level sensor 	
P0463 0463	Fuel level sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.		

DTC Confirmation Procedure

ABS002LL

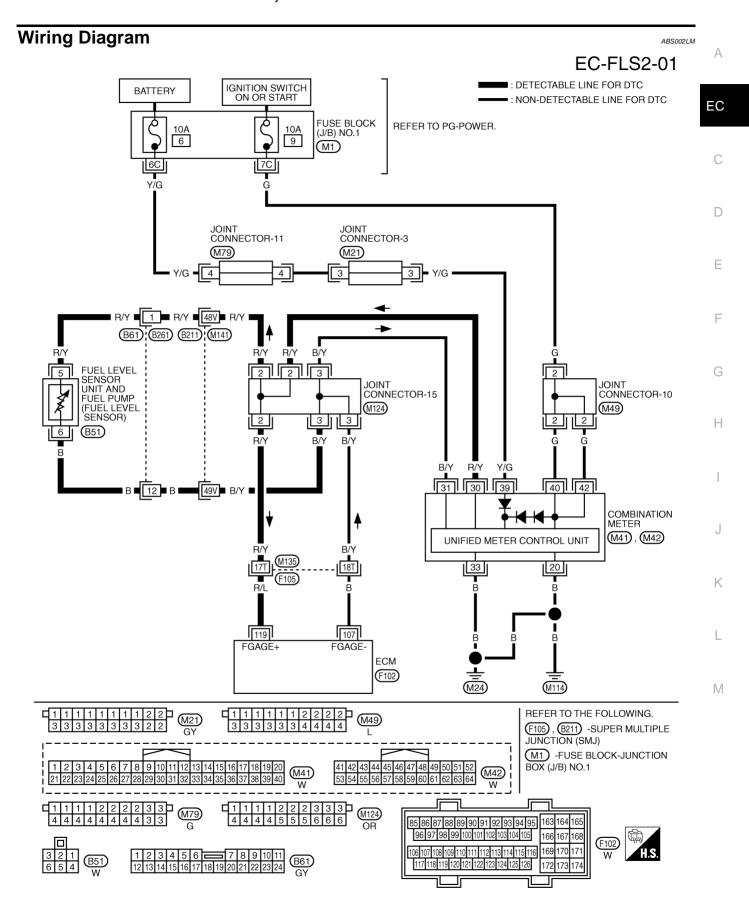
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch ON.

(P) WITH CONSULT-II


- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-396, "Diagnostic Procedure"

.

WITH GST

Follow the procedure WITH CONSULT-II above.

TBWA0294E

DTC P0462, P0463 FUEL LEVEL SENSOR

Specification data are reference values and are measured between each terminal and ground.

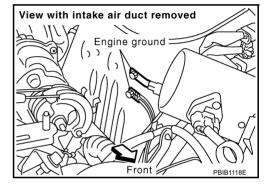
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
119	R/L	Fuel level sensor	[Ignition switch: ON]	Approximately 0 - 4.8V Output voltage varies with fuel level.
107	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V

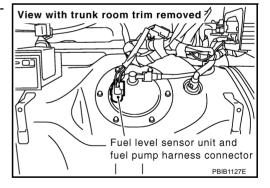
Diagnostic Procedure

ABS002LN


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to EC-141, "Ground Inspection".

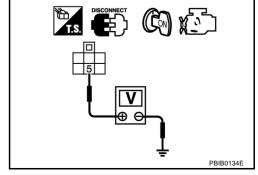
OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK FUEL LEVEL SENSOR POWER SUPPLY CIRCUIT

- Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 2. Turn ignition switch ON.



Check voltage between "fuel level sensor unit and fuel pump" terminal 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

DTC P0462, P0463 FUEL LEVEL SENSOR

$\overline{3}$. DETECT MALFUNCTIONING PART Check the following. Harness connectors M141, B211 EC Harness connectors B61, B261 Harness connector-15 Harness for open or short between combination meter and "fuel level sensor unit and fuel pump" >> Repair open circuit or short to ground or short to power in harness or connectors. 4. CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT Turn ignition switch OFF. F 2. Disconnect combination meter harness connector. Check harness continuity between combination meter terminal 31 and "fuel level sensor unit and fuel pump" terminal 6. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 6. NG >> GO TO 5. Н 5. DETECT MALFUNCTIONING PART Check the following. Harness connectors M141, B211 Harness connectors B61, B261 Harness connector-15 Harness for open or short between ECM and "fuel level sensor unit and fuel pump" >> Repair open circuit or short to ground or short to power in harness or connectors. 6. CHECK FUEL LEVEL SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT Disconnect ECM harness connector. 1. Check harness continuity between the following; ECM terminal 119 and "fuel level sensor unit and fuel pump" terminal 5, ECM terminal 107 and "fuel level sensor unit and fuel pump" terminal 6. M Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 8. >> GO TO 7. NG 7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Joint connector-15
- Harness for open or short between ECM and "fuel level sensor and fuel pump"

>> Repair open circuit or short to ground or short to power in harness or connectors.

Revision: 2004 October **EC-397** 2004 M45

DTC P0462, P0463 FUEL LEVEL SENSOR

8. CHECK FUEL LEVEL SENSOR

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

OK or NG

OK >> GO TO 9.

NG >> Replace fuel level sensor unit.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Removal and Installation FUEL LEVEL SENSOR

ABS002LO

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

DTC P0500 VSS

DTC P0500 VSS PFP:32702

Description ABS002LP

NOTE:

If DTC P0500 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-143, "DTC U1000, U1001 CAN COMMUNICATION LINE".

The vehicle speed signal is sent to the combination meter from the VDC/TCS/ABS control unit by CAN communication line. The combination meter then sends a signal to the ECM by CAN communication line.

On Board Diagnosis Logic

ABS002LO

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0500 0500	Vehicle speed sensor		Harness or connectors (The CAN communication line is open or shorted)
		The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	 Harness or connectors (The vehicle speed signal circuit is open or shorted)
			Wheel sensor
			Combination meter
			VDC/TCS/ABS control unit

DTC Confirmation Procedure

ABS002LR

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(A) WITH CONSULT-II

- 1. Start engine (VDC switch OFF).
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

If NG, go to EC-400, "Diagnostic Procedure".

- If OK, go to following step.
- Select "DATA MONITOR" mode with CONSULT-II.
- Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive sec-5. onds.

ENG SPEED	1,400 - 6,000 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	4.5 - 31.9 msec
Selector lever	Except P or N position
PW/ST SIGNAL	OFF

6. If 1st trip DTC is detected, go to EC-400, "Diagnostic Procedure"

DATA MONITOR		
MONITOR	N	O DTC
ENG SPEED	xxx	rpm
COOLAN TEMP/S	XXX	°C
B/FUEL SCHDL	XXX r	nsec
PW/ST SIGNAL	OF	F
VHCL SPEED SE	xxx	km/h

EC

Α

F

Н

DTC P0500 VSS

Overall Function Check

ABS0021

Use this procedure to check the overall function of the vehicle speed sensor circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Lift up drive wheels.
- Start engine.
- Read vehicle speed sensor signal in "MODE 1" with GST.
 The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.
- 4. If NG, go to EC-400, "Diagnostic Procedure".

Diagnostic Procedure

ABS002LT

1. CHECK DTC WITH VDC/TCS/ABS CONTROL UNIT

Refer to BRC-11, "TROUBLE DIAGNOSIS".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK COMBINATION METER

Check combination meter function.

Refer to DI-6, "COMBINATION METERS".

>> INSPECTION END

DTC P0506 ISC SYSTEM

DTC P0506 ISC SYSTEM

PFP:23781

Description

ABS002LU

Α

EC

NOTE:

If DTC P0506 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

ABS002LV

F

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0506	Idle speed control system	The idle speed is less than the target idle	Electric throttle control actuator
0506	RPM lower than expected	speed by 100 rpm or more.	Intake air leak

DTC Confirmation Procedure

ABS002LW

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform <u>EC-44</u>, "Idle Air Volume Learning", before conducting DTC Confirmation Procedure. For the target idle speed, refer to the <u>EC-706</u>, "SERVICE DATA AND SPECIFICATIONS (SDS)".

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above –10°C (14°F).

(A) WITH CONSULT-II

- 1. Open engine hood.
- 2. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 1 minute at idle speed.
- 6. If 1st trip DTC is detected, go to EC-402, "Diagnostic Procedure"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm
COOLAN TEMP/S XXX °C

WITH GST

Follow the procedure WITH CONSULT-II above.

Revision: 2004 October **EC-401** 2004 M45

DTC P0506 ISC SYSTEM

Diagnostic Procedure

1. CHECK INTAKE AIR LEAK

ABS002LX

- 1. Start engine and let it idle.
- 2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2. REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to <u>BL-174, "ECM Re-Communicating Function"</u>.
- 4. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-44, "Throttle Valve Closed Position Learning".
- 6. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

DTC P0507 ISC SYSTEM

DTC P0507 ISC SYSTEM

PFP:23781

Description

ABS002LY

Α

EC

 \Box

F

F

M

NOTE:

If DTC P0507 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The crankshaft position sensor (POS) detects the actual engine speed and sends a signal to the ECM.

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

ABS00217

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0507 0507	Idle speed control system RPM higher than expected	The idle speed is more than the target idle speed by 200 rpm or more.	Electric throttle control actuator
			Intake air leak
			PCV system

DTC Confirmation Procedure

ABS002M0

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform <u>EC-44, "Idle Air Volume Learning"</u>, before conducting DTC Confirmation Procedure. For the target idle speed, refer to the <u>EC-706, "SERVICE DATA AND SPECIFICATIONS (SDS)"</u>.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above –10°C (14°F).

(P) WITH CONSULT-II

- Open engine hood.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- 5. Start engine and run it for at least 1 minute at idle speed.
- 6. If 1st trip DTC is detected, go to EC-404, "Diagnostic Procedure"

WITH GST

Follow the procedure WITH CONSULT-II above.

Revision: 2004 October EC-403 2004 M45

DTC P0507 ISC SYSTEM

Diagnostic Procedure

1. CHECK PCV HOSE CONNECTION

ABS002M1

Confirm that PCV hose is connected correctly.

OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK INTAKE AIR LEAK

- 1. Start engine and let it idle.
- 2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

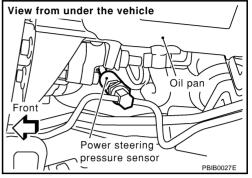
OK >> GO TO 3.

NG >> Discover air leak location and repair.

3. REPLACE ECM

- 1. Stop engine.
- 2. Replace ECM.
- 3. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to <u>BL-174, "ECM Re-Communicating Function"</u>.
- 4. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-44, "Throttle Valve Closed Position Learning".
- 6. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END


DTC P0550 PSP SENSOR

PFP:49763

Component Description

ABS002M2

Power steering pressure (PSP) sensor is installed to the power steering high-pressure tube and detects a power steering load. This sensor is a potentiometer which transforms the power steering load into output voltage, and emits the voltage signal to the ECM. The ECM controls the electric throttle control actuator and adjusts the throttle valve opening angle to increase the engine speed and adjusts the idle speed for the increased load.

CONSULT-II Reference Value in Data Monitor Mode

ABS002M3

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	Engine: After warming up, idle the engine	Steering wheel: Not being turned. (Forward direction)	OFF
	the engine	Steering wheel: Being turned.	ON

On Board Diagnosis Logic

ABS002M4

NOTE:

If DTC P0550 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229.

Refer to EC-531.

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0550 0550	Power steering pressure sensor circuit	An excessively low or high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted) Power steering pressure sensor

DTC Confirmation Procedure

ABS002M5

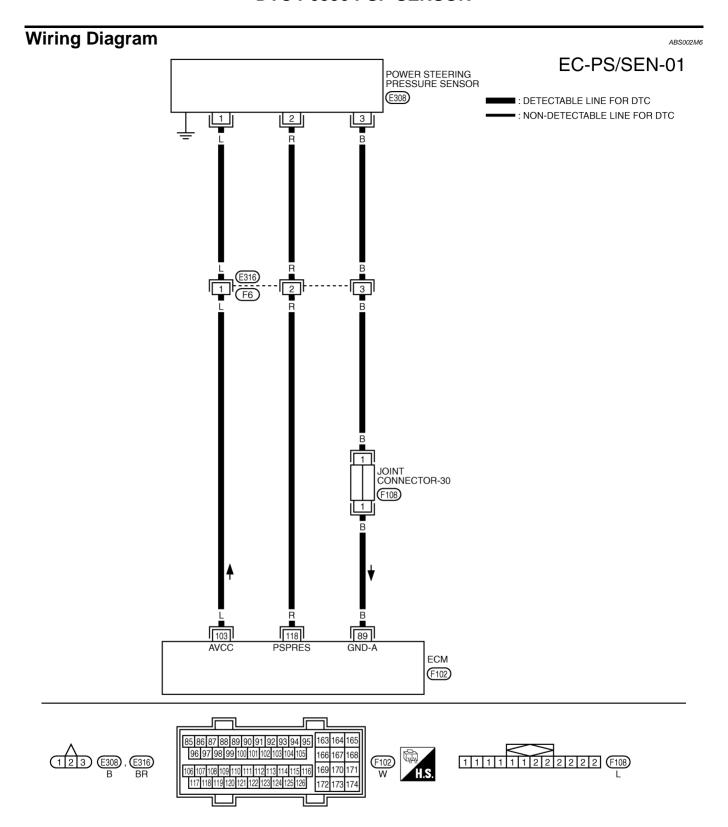
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-407, "Diagnostic Procedure".

GI WITH GST


Follow the procedure WITH CONSULT-II above.

EC

Α

F

Н

TBWA0296E

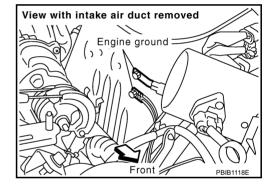
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
89	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V
118	440 D	Power steering pressure sensor	[Engine is running]Steering wheel: Being turned.	0.5 - 4.0V
110	IX.		[Engine is running]Steering wheel: Not being turned.	0.4 - 0.8V

Diagnostic Procedure


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

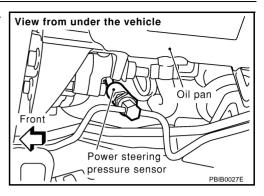
Α

D

F

G

Н

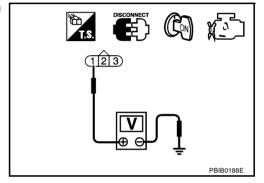

ABS002M7

K

 \mathbb{N}

$\overline{2}$. CHECK PSP SENSOR POWER SUPPLY CIRCUIT

- Disconnect power steering pressure (PSP) sensor harness connector.
- 2. Turn ignition switch ON.



Check voltage between PSP sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F6, E316
- Harness for open or short between ECM and PSP sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK PSP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between PSP sensor terminal 3 and ECM terminal 89. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F6, E316
- Joint connector-30
- Harness for open or short between PSP sensor and ECM
 - >> Repair open circuit or short to power in harness or connectors.

6. CHECK PSP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 118 and PSP sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F6, E316
- Harness for open or short between ECM and PSP sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK PSP SENSOR

Refer to EC-409, "Component Inspection".

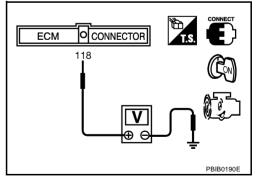
OK or NG

OK >> GO TO 9.

NG >> Replace PSP sensor.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection POWER STEERING PRESSURE SENSOR

1. Reconnect all harness connectors disconnected.

- 2. Start engine and let it idle.
- 3. Check voltage between ECM terminal 118 and ground under the following conditions.

Condition	Voltage
Steering wheel: Being turned fully.	Approximately 3.6V
Steering wheel: Not being turned.	Approximately 0.6V

ABS00A7L

Removal and Installation POWER STEERING PRESSURE SENSOR

Refer to PS-31, "HYDRAULIC LINE".

EC

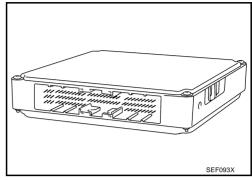
_

D

F

Н

ABS002M8


L

DTC P0605 ECM PFP:23710

Component Description

ABS002M9

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The ECM controls the engine.

On Board Diagnosis Logic

ABS002MA

This self-diagnosis has one or two trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P0605 0605	Engine control module	A)	ECM calculation function is malfunctioning.	
		B)	ECM EEP-ROM system is malfunctioning.	• ECM
		C)	ECM self shut-off function is malfunctioning.	

FAIL-SAFE MODE

ECM enters fail-safe mode when the malfunction A is detected.

Detected items	Engine operation condition in fail-safe mode	
Malfunction A	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring. When the accelerator pedal depressed value reaches a throttle opening of 30 degrees or more, the throttle valve opens to a maximum of 20 degrees by the accelerator wire.	

DTC Confirmation Procedure

ABS002MB

Perform PROCEDURE FOR MALFUNCTION A first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B. If there is no malfunction on PROCEDURE FOR MALFUNCTION B, perform PROCEDURE FOR MALFUNCTION C.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

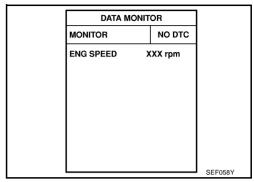
PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. If 1st trip DTC is detected, go to EC-411, "Diagnostic Procedure"

DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

With GST

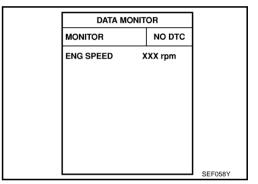

Follow the procedure With CONSULT-II above.

DTC P0605 ECM

PROCEDURE FOR MALFUNCTION B

With CONSULT-II

- Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 4. If 1st trip DTC is detected, go to EC-411, "Diagnostic Procedure"


With GST

Follow the procedure With CONSULT-II above.

PROCEDURE FOR MALFUNCTION C

(P) With CONSULT-II

- Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 4. Repeat step 3 for 32 times.
- If 1st trip DTC is detected, go to EC-411, "Diagnostic Procedure"

With GST

Follow the procedure With CONSULT-II above.

Diagnostic Procedure

1. INSPECTION START

(P) With CONSULT-II

- Turn ignition switch ON.
- Select "SELF DIAG RESULTS" mode with CONSULT-II.
- Touch "ERASE". 3.
- 4. Perform DTC Confirmation Procedure.

See EC-410.

5. Is the 1st trip DTC P0605 displayed again?

With GST

- 1. Turn ignition switch ON.
- Select MODE 4 with GST.
- Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See <u>EC-410</u>.

5. Is the 1st trip DTC P0605 displayed again?

Yes or No

Yes >> GO TO 2.

No >> INSPECTION END

EC-411 Revision: 2004 October 2004 M45

EC

Α

Н

ABS002MC

DTC P0605 ECM

2. REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to <u>BL-174, "ECM Re-Communicating Function"</u>.
- 3. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 4. Perform EC-44, "Throttle Valve Closed Position Learning".
- 5. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

DTC P0650 MIL

DTC P0650 MIL PFP:24810

Component Description

ABS002MD

Malfunction Indicator Lamp (MIL) is located on the instrument panel. When the ignition switch is turned ON without engine running, MIL will light up. This is a bulb check. When the engine is started, MIL should go off. If MIL remains on, the on board diagnostic system has detected an engine system malfunction.

EC

Α

On Board Diagnosis Logic

ABS002MF

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0650 0650	Malfunction indicator lamp (MIL) control circuit	 An excessively high voltage is sent to ECM through the MIL circuit under the condition that calls for MIL light up. An excessively low voltage is sent to ECM through the MIL circuit under the condition that calls for MIL not to light up. 	Harness or connectors (MIL circuit is open or shorted.) MIL

F

 D

FAIL-SAFE MODE

Г

ECM enters fail-safe mode when both DTC P0650 and another DTC, which calls for MIL to light up, are detected at the same time.

G

Detected items	Engine operating condition in fail-safe mode
MIL circuit	Engine speed will not rise more than 2,500 rpm due to the fuel cut

- H

J

M

DTC Confirmation Procedure

ABS002MF

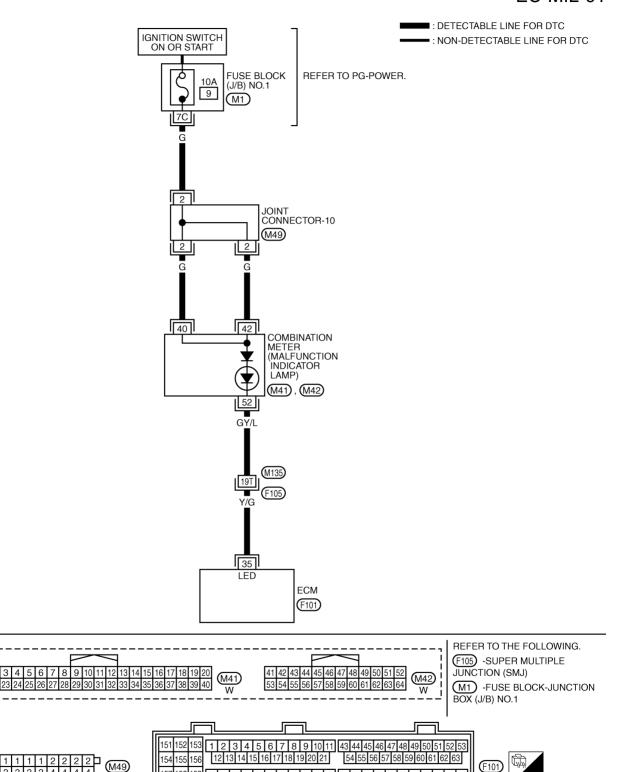
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If 1st trip DTC is detected, go to EC-415, "Diagnostic Procedure"

DATA M	ONITOR	1
MONITOR	NO DTC	
ENG SPEED	XXX rpm	1
		J SEF058


WITH GST

Follow the procedure WITH CONSULT-II above.

Wiring Diagram

ABS002MG

EC-MIL-01

75 76 77 78 79 80 81 82 83 84

TBWA0297E

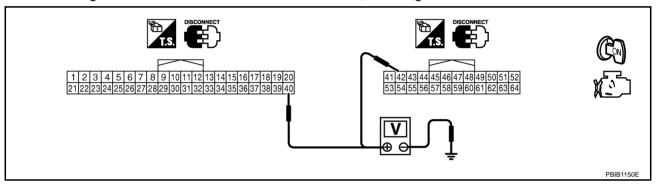
33 34 35 36 37 38 39 40 41 42

157 158 159 160 161 162

DTC P0650 MIL

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Ignition switch: ON]	0 - 1.0V
35	Y/G	MIL	[Engine is running]	BATTERY VOLTAGE
			Idle speed	(11 - 14V)

Diagnostic Procedure

1. CHECK MIL POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect combination meter harness connector.
- 3. Turn ignition switch ON.
- 4. Check voltage between combination meter terminals 40, 42 and ground with CONSULT-II or tester

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector M1
- 10A fuse
- Joint connector-10
- Harness for open or short between fuse block (J/B) and combination meter
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

ABS002MH

F

F

G

Н

Κ

3. CHECK MIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 35 and combination meter terminal 52. Refer to Wiring Diagram.

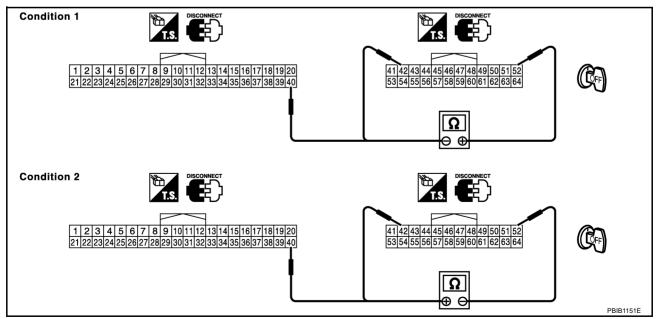
Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART


Check the following.

- Harness connectors F105, M135
- Harness for open or short between ECM and combination meter
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK COMBINATION METER

- 1. Turn ignition switch OFF.
- 2. Disconnect combination meter harness connector.
- 3. Check continuity under the following conditions.

CONDITION	Combination meter terminal No. (Polarity)	Continuity
1	52 (+) - 40 (-)	Should exist.
'	52 (+) - 42 (–)	- Siloulu exist.
2	40 (+) - 52 (–)	Should not exist.
2	42 (+) - 52 (-)	Should not exist.

OK or NG

OK >> GO TO 6.

NG >> Replace combination meter. Refer to DI-19, "Removal and Installation of Combination Meter".

DTC P0650 MIL

6. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

С

Е

D

F

G

Н

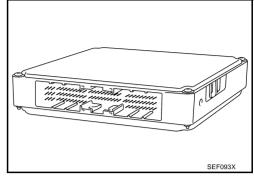
1

J

<

.

DTC P1065 ECM POWER SUPPLY


DTC P1065 ECM POWER SUPPLY

PFP:23710

Component Description

ABS002MI

Battery voltage is supplied to the ECM even when the ignition switch is turned OFF for the ECM memory function of the DTC memory, the air-fuel ratio feedback compensation value memory, the idle air volume learning value memory, etc.

On Board Diagnosis Logic

ABS002MJ

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1065 1065	ECM power supply circuit	ECM back-up RAM system does not function properly.	 Harness or connectors [ECM power supply (back-up) circuit is open or shorted.] ECM

DTC Confirmation Procedure

ABS002MK

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 5. Repeat steps 3 and 4 for four times.
- If 1st trip DTC is detected, go to <u>EC-420, "Diagnostic Procedure"</u>

DATA MONITOR

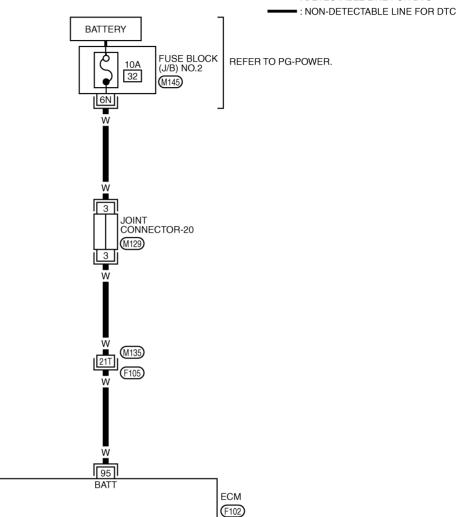
MONITOR

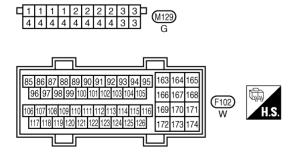
NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST


Follow the procedure WITH CONSULT-II above.


Wiring Diagram

BS002MI

EC-ECM/PW-01

■ : DETECTABLE LINE FOR DTC

REFER TO THE FOLLOWING.

(F105) -SUPER MULTIPLE
JUNCTION (SMJ)

M145) -FUSE BLOCK-JUNCTION BOX (J/B) NO.2

TBWA0320E

EC

С

Α

D

Е

Γ

G

Н

J

<

L

DTC P1065 ECM POWER SUPPLY

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
95	W	Power supply for ECM (Back-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

ABS002MM


1. CHECK ECM POWER SUPPLY

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check voltage between ECM terminal 95 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Joint connector-20
- Fuse block (J/B) No.2 connector M145
- 10A fuse
- Harness for open or short between ECM and battery

>> Repair or replace harness or connectors.

3. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

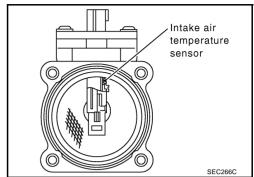
OK >> GO TO 4.

NG >> Repair or replace harness or connectors.

DTC P1065 ECM POWER SUPPLY

4. PERFORM DTC CONFIRMATION PROCEDURE (II) With CONSULT-II 1. Turn ignition switch ON. EC Select "SELF DIAG RESULTS" mode with CONSULT-II. Touch "ERASE". Perform DTC Confirmation Procedure. See EC-418. 5. Is the 1st trip DTC P1065 displayed again? **With GST** D 1. Turn ignition switch ON. Select MODE 4 with GST. F Touch "ERASE". 4. Perform DTC Confirmation Procedure. See EC-418. 5. Is the 1st trip DTC P1065 displayed again? Yes or No Yes >> GO TO 5. G No >> INSPECTION END 5. REPLACE ECM Н Replace ECM. 1. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-174, "ECM Re-Communicating Function". 3. Perform EC-44, "Accelerator Pedal Released Position Learning". 4. Perform EC-44, "Throttle Valve Closed Position Learning". 5. Perform EC-44, "Idle Air Volume Learning". >> INSPECTION END

Revision: 2004 October **EC-421** 2004 M45


DTC P1102 MAF SENSOR

PFP:22680

Component Description

ABS002MN

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot film is reduced as the intake air flows around it. The more air, the greater the heat loss. Therefore, the ECM must supply more electric current to maintain the temperature of the hot film as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

ABS002MO

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAS A/F SE-B1	See EC-128, "TROUBLE DIAGNOSIS - SPECIFICATION VALUE".		
	Engine: After warming up	Idle	15% - 35%
CAL/LD VALUE	Selector lever: P or N		
CAL/LD VALUE	Air conditioner switch: OFF	2,500 rpm	10% - 35%
	No load		
	Engine: After warming up	Idle	3.8 - 5.2 g⋅m/s
MASS AIRFLOW	Selector lever: P or N		
	Air conditioner switch: OFF	2,500 rpm	16.0 - 21.5 g⋅m/s
	No load		

On Board Diagnosis Logic

ABS002MP

NOTE:

If DTC P1102 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to $\underline{\text{EC-531}}$.

This self-diagnosis has the one trip detection logic.

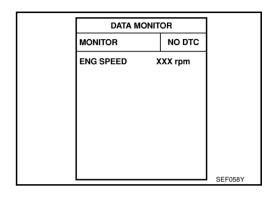
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1102 1102	Mass air flow sensor circuit range/performance problem	A voltage from the sensor is constantly approx.1.0V when engine is running.	Harness or connectors (The sensor circuit is open or shorted.)Mass air flow sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode	
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.	

DTC Confirmation Procedure


SUUSINO

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(I) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 5 seconds.
- 4. If DTC is detected, go to EC-425, "Diagnostic Procedure".

WITH GST

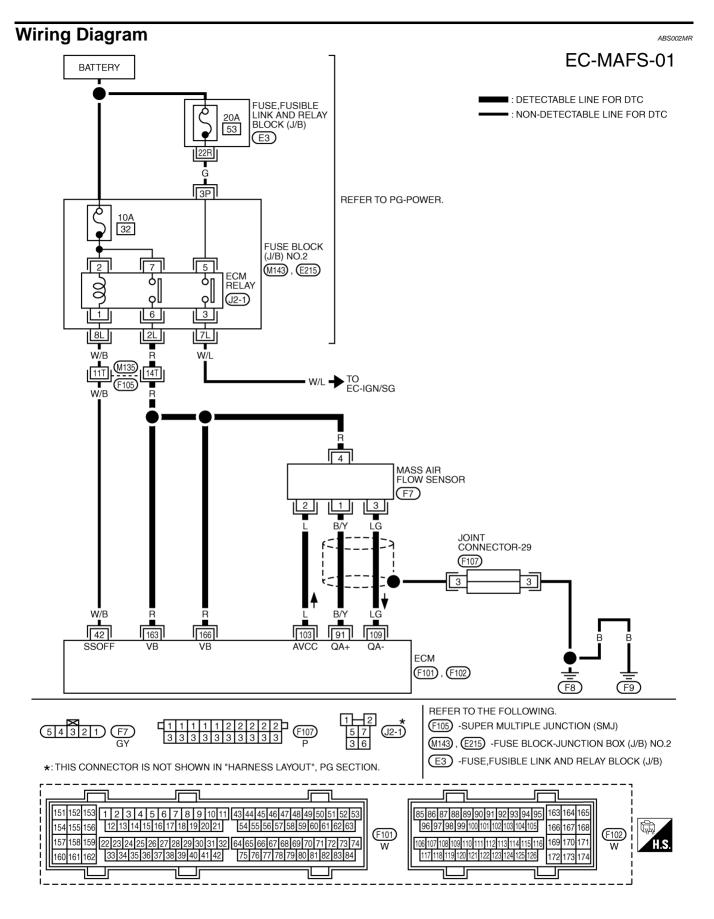
Follow the procedure WITH CONSULT-II above.

EC

Α

С

D


Е

G

Н

K

L

TBWA0271E

Specification data are reference values and are measured between each terminal and ground.

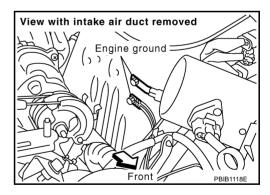
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
42	W/B	ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]A few seconds after turning ignition switch OFF	0 - 1.0V	
		(Gell Shut-Oll)	[Ignition switch: OFF]More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	
91		504	Managinflauranna	[Engine is running]Warm-up conditionIdle speed	1.1 - 1.5V
91	B/Y	Mass air flow sensor	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm.	1.7 - 2.4V	
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V	
109	LG	Mass air flow sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	
163 166	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS


1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

Α

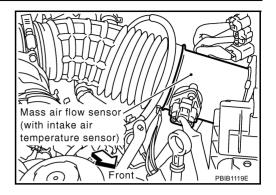
D

Е

G

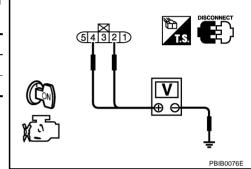
Н

ABS002MS


K

. .

L


$\overline{2}$. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect MAF sensor harness connector.
- 2. Turn ignition switch ON.

3. Check voltage between MAF sensor terminals 2, 4 and ground with CONSULT-II or tester.

Terminal	Voltage
2	Approximately 5V
4	Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Harness for open or short between mass air flow sensor and ECM relay
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between MAF sensor terminal 3 and ECM terminal 109. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between MAF sensor terminal 1 and ECM terminal 91. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK MASS AIR FLOW SENSOR

Refer to EC-427, "Component Inspection".

OK or NG

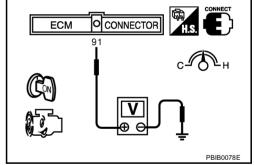
OK >> GO TO 7.

NG >> Replace mass air flow sensor.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection MASS AIR FLOW SENSOR

Reconnect harness connectors disconnected.

Start engine and warm it up to normal operating temperature.

Check voltage between ECM terminal 91 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch "ON" (Engine stopped.)	Approx. 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.1 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.7 - 2.4
Idle to about 4,000 rpm*	1.1 - 1.5 to Approx. 4.0

^{*:} Make sure linear voltage rises as engine speed increases to about 4,000 rpm.

- 4. If the voltage is out of specification, proceed the following.
 - Turn ignition switch OFF.
 - Disconnect mass air flow sensor harness connector and reconnect it again.
 - Perform steps 2 and 3 again.
- If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.
- If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

Refer to EM-16, "AIR CLEANER AND AIR DUCT" .

EC

F

ABS002MT

M

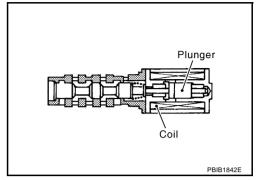
ARSON2MI.

DTC P1111, P1136 IVT CONTROL SOLENOID VALVE

PFP:23796

Component Description

ABS002MV


Intake valve timing control solenoid valve is activated by ON/OFF pulse duty (ratio) signals from the ECM.

The intake valve timing control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.

CONSULT-II Reference Value in Data Monitor Mode

ABS002MW

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1)	 Selector lever: P or N 		
INT/V SOL (B2)	 Air conditioner switch: OFF 	2,000 rpm	Approx. 25% - 50%
	No load		

On Board Diagnosis Logic

ABS002MX

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1111 1111 (bank 1)	Intake valve timing control	An improper voltage is sent to the ECM through intake valve timing control solenoid	Harness or connectors (Intake valve timing control solenoid)
P1136 1136 (bank 2)	solenoid valve circuit	I valve circuit valve.	valve circuit is open or shorted.) • Intake valve timing control solenoid valve.

DTC Confirmation Procedure

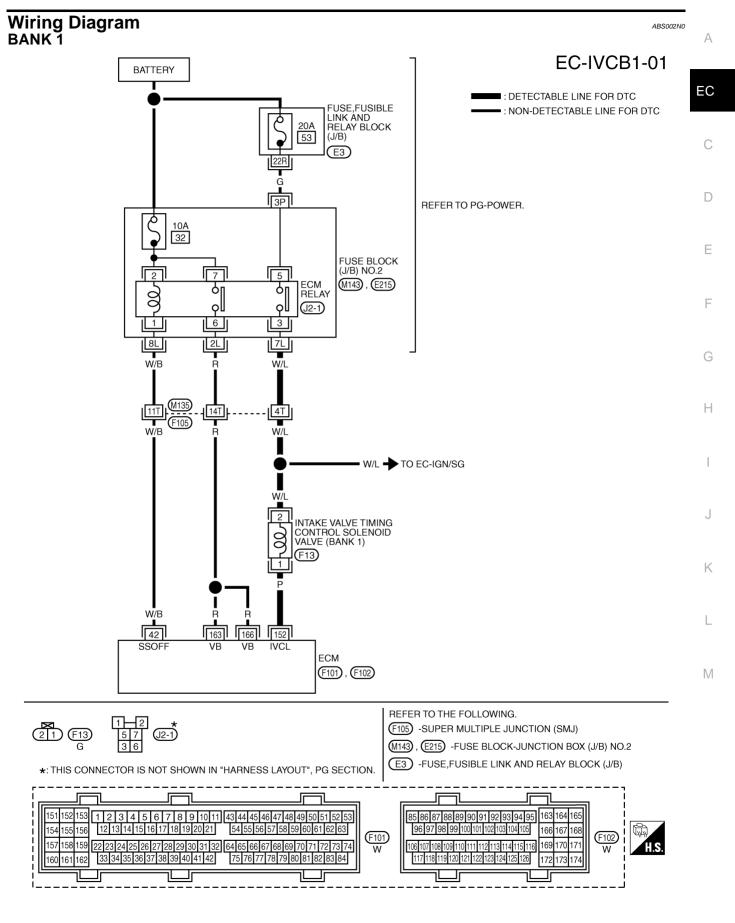
ABS002MZ

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.


(P) WITH CONSULT-II

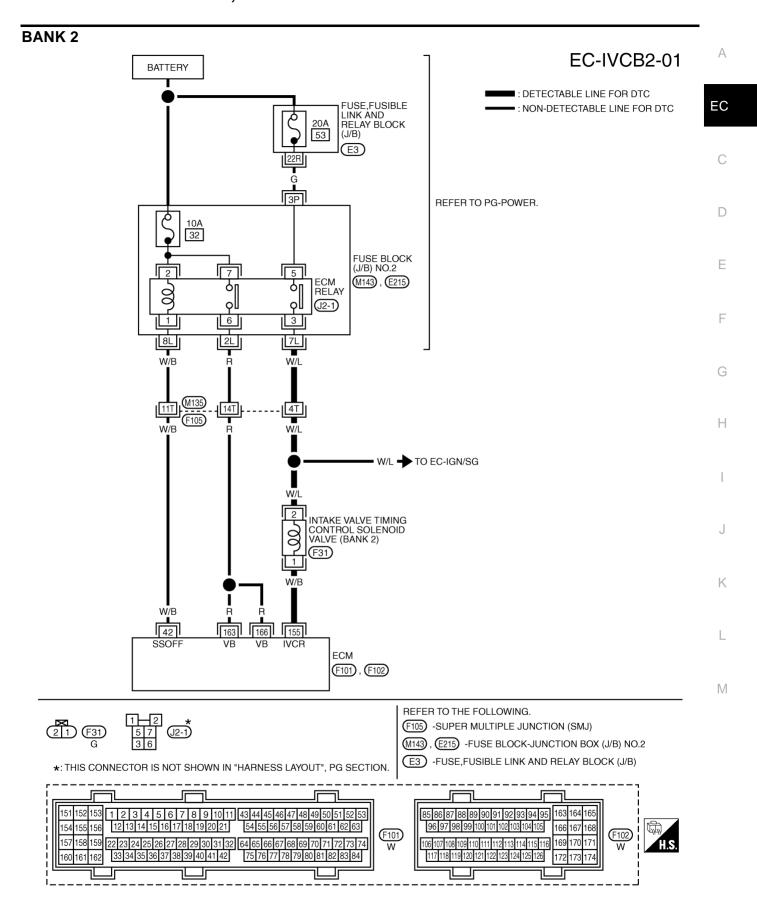
- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait let it idle for 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-432, "Diagnostic Procedure"

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XX rpm	
		SEF058Y

WITH GST

Following the procedure WITH CONSULT-II above.

TBWA0263E


Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)
152	Р	Intake valve timing control solenoid valve (bank 1)	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	7 - 12V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

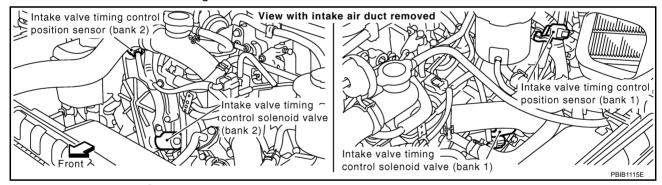
TBWA0264E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)
155	W/B	Intake valve timing control solenoid valve (bank 2)	[Engine is running] • Warm-up condition • Engine speed: 2,500 rpm	7 - 12V★

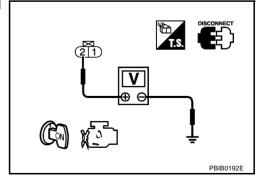

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK POWER SUPPLY CIRCUIT

ABS002N1

- 1. Turn ignition switch OFF.
- Disconnect intake valve timing control solenoid valve harness connector.



- Turn ignition switch ON.
- 4. Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

DTC P1111, P1136 IVT CONTROL SOLENOID VALVE

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Harness for open or short between intake valve timing control solenoid valve and ECM relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR **OPEN AND SHORT**

- Turn ignition switch OFF.
- 2 Disconnect ECM harness connector.
- Check harness continuity between the following: ECM terminal 152 (bank 1) and intake valve timing control solenoid valve terminal 1 or ECM terminal 155 (bank 2) and intake valve timing control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

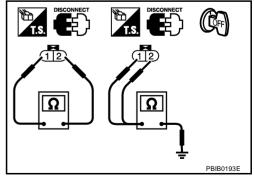
Refer to EC-433, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace intake valve timing control solenoid valve.

5. CHECK INTERMITTENT INCIDENT


Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection INTAKE VALVE TIMING CONTROL SOLENOID VALVE

- Disconnect intake valve timing control solenoid valve harness connector.
- Check resistance between intake valve timing control solenoid valve terminals as follows.

Terminals	Resistance
1 and 2	7.0 - 7.7Ω [at 20°C (68°F)]
1 or 2 and ground	${}^{\infty}\Omega$ (Continuity should not exist)

ABS002N3

Removal and Installation INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EM-38, "TIMING CHAIN".

EC-433 Revision: 2004 October 2004 M45

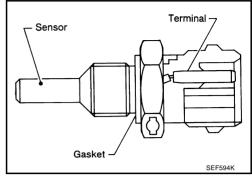
EC

D

F

Н

ABS002N2

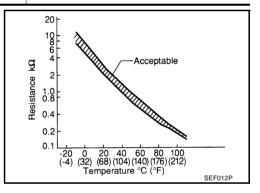

DTC P1119 RADIATOR COOLANT TEMPERATURE SENSOR

PFP:22630

Component Description

ABS002N4

The radiator coolant temperature sensor is installed on the radiator lower tank and used to detect the radiator coolant temperature. The sensor modifies a voltage signal from the ECM and returns the modified signal to the ECM as the radiator coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of thermistor decreases as temperature increase. The ECM uses this signal to control the cooling fan speed control solenoid valve.


<Reference data>

Radiator coolant temperature °C (°F)	Voltage* V	Resistance k Ω
-10 (14)	4.4	9.017 - 9.723
20 (68)	3.5	2.437 - 2.595
90 (194)	0.9	0.2416 - 0.2575
110 (230)	0.64	0.1451 - 0.1522
150 (302)	0.32	0.05927 - 0.06267

^{*:} This data is reference values and is measured between ECM terminal 122 (Radiator coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

ABS002N5

This self-diagnosis has the one trip detection logic. The MIL will not light up for this diagnosis.

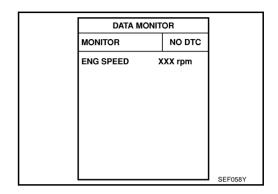
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1119 1119	Radiator coolant temperature sensor circuit	An excessively high or low voltage from the radiator coolant temperature sensor is sent to ECM.	 Harness or connectors (The radiator coolant temperature sensor circuit is open or shorted.) Radiator coolant temperature sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode
Radiator coolant temperature sensor circuit	ECM controls on assumption that the radiator coolant temperature is 97 °C (207 °F).

DTC Confirmation Procedure


ABS002N7

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(I) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If DTC is detected, go to EC-437, "Diagnostic Procedure".

WITH GST

Follow the procedure WITH CONSULT-II above.

EC

Α

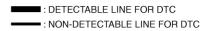
С

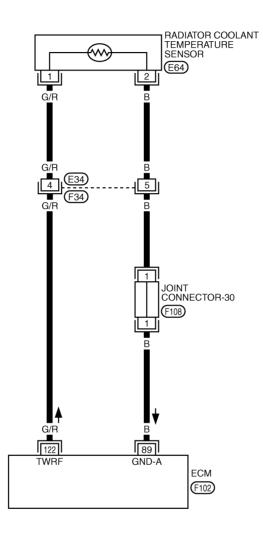
D

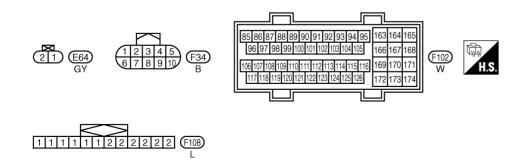
Е

.

G


Н


J


K

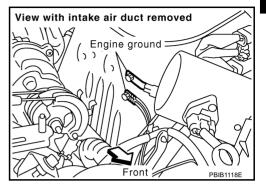
Wiring Diagram

EC-RCTS-01

TBWA0305E

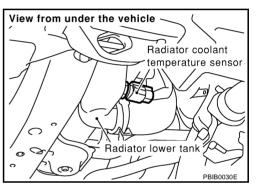
Diagnostic Procedure

ABS002N9


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

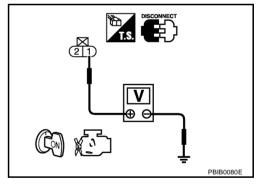
OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK RADIATOR COOLANT TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Disconnect radiator coolant temperature sensor harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between radiator coolant temperature sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connector E34, F34
- Harness for open or short between ECM and radiator coolant temperature sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Α

D

Е

Н

-

K

.

4. CHECK RADIATOR COOLANT TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between radiator coolant temperature sensor terminal 2 and ECM terminal 89. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connector E34, F34
- Joint connector-30
- Harness for open or short between ECM and radiator coolant temperature sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK RADIATOR COOLANT TEMPERATURE SENSOR

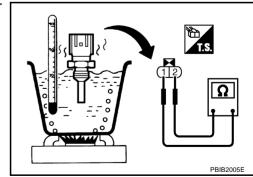
Refer to EC-438, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace radiator coolant temperature sensor.

7. CHECK INTERMITTENT INCIDENT


Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection RADIATOR COOLANT TEMPERATURE SENSOR

ABS002NA

1. Check resistance between radiator coolant temperature sensor terminals 1 and 2 as shown in the figure.

<reference data=""></reference>	
Radiator coolant temperature °C (°F)	Resistance kΩ
20 (68)	2.437 - 2.595
90 (194)	0.2416 - 0.2575

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

2. If NG, replace radiator coolant temperature sensor.

Removal and Installation RADIATOR COOLANT TEMPERATURE SENSOR

Refer to CO-12, "RADIATOR".

ABS002NB

Е

D

Α

EC

G

Н

.1

K

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

PFP:16119

Component Description

ABS002NC

Electric throttle control actuator consists of throttle control motor, accelerator pedal position sensor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

Accelerator pedal position sensor detects the accelerator pedal position, the opening and closing speed of the accelerator pedal and feeds the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle motor based on these signals.

The throttle position sensor detects the throttle valve position, and the opening and closing speed of the throttle valve and feeds the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

ABS002ND

These self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
		A)	Electric throttle control actuator does not function properly due to the return spring malfunction.	
P1121 1121	Electric throttle control actuator	В)	Throttle valve opening angle in fail-safe mode is not in specified range.	Electric throttle control actuator
		C)	ECM detect the throttle valve is stuck open.	

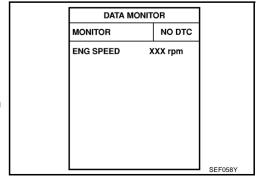
FAIL-SAFE MODE

When the malfunction is detected ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode	
Malfunction A	The ECM controls the electric throttle actuator by regulating the throttle opening around the idle position. The engine speed will not rise more than 2,000 rpm.	
Malfunction B	ECM controls the electric throttle control actuator by regulating the throttle opening to 20 degrees or less.	
Malfunction C	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in N or P position, and engine speed will not exceed 1,000 rpm or more.	

DTC Confirmation Procedure

ABS009R6


NOTE:

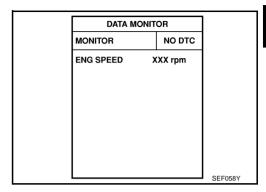
- Perform PROCEDURE FOR MALFUNCTION A AND B first. If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION C.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A AND B

(P) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Set selector lever to D position and wait at least 3 seconds.
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Turn ignition switch ON and wait at least 1 seconds.
- 6. Set selector lever to D position and wait at least 3 seconds.
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 8. If DTC is detected, go to EC-441, "Diagnostic Procedure".

With GST


Follow the procedure With CONSULT-II above.

DTC P1121 ELECTRIC THROTTLE CONTROL ACTUATOR

PROCEDURE FOR MALFUNCTION C

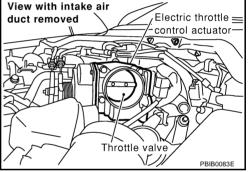
With CONSULT-II

- Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- Set selector lever to D position and wait at least 3 seconds. 3.
- Set selector lever to N or P position.
- Start engine and let it idle for 3 seconds.
- If DTC is detected, go to EC-441, "Diagnostic Procedure".

With GST

Follow the procedure With CONSULT-II above.

Diagnostic Procedure


1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

- Remove the intake air duct.
- Check if a foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".
- Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

View with intake air

EC

Α

ARS002NE

Н

DTC P1122 ELECTRIC THROTTLE CONTROL FUNCTION

PFP:16119

Description

ABS002NG

NOTE:

If DTC P1122 is displayed with DTC P1121 or 1126, first perform the trouble diagnosis for DTC P1121 or P1126. Refer to EC-440 or EC-449.

Electric throttle control actuator consists of throttle control motor, accelerator pedal position sensor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

ARSOONIL

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1122 1122	Electric throttle control performance problem	Electric throttle control function does not operate properly.	 Harness or connectors (Throttle control motor circuit is open or shorted) Electric throttle control actuator

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

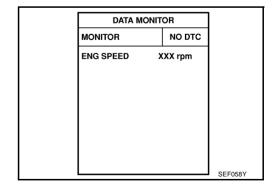
Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

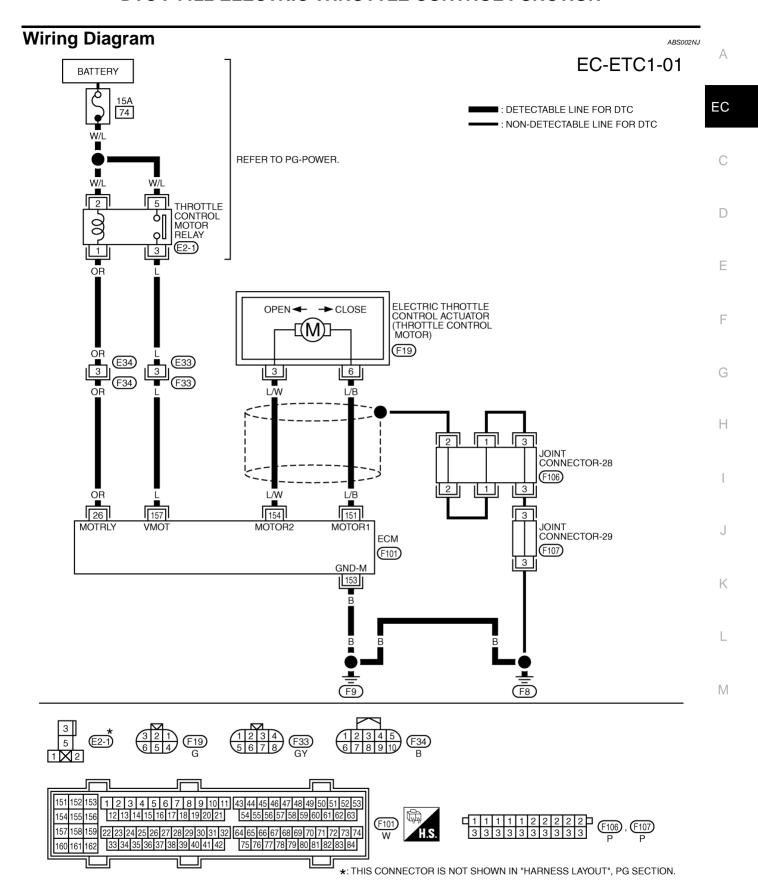
ABS00A2N

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V when engine is running.


(P) WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-444, "Diagnostic Procedure".

WITH GST

Follow the procedure WITH CONSULT-II above.

TBWA0298E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

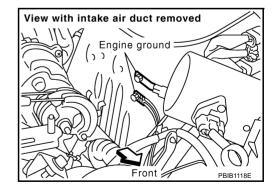
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
26	OR	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V
151	L/B	Throttle control motor (Open)	 [Ignition switch ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	0 - 14V★ 10.0V/Div 200 us/Div PBIB0058E
153	В	Throttle control motor ground	[Ignition switch: ON]	Approximately 0V
154	L/W	Throttle control motor (Close)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully released	0 - 14V★
157	L	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS


ABS002NK

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

OK >> GO TO 2.

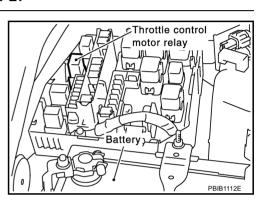
NG >> Repair or replace ground connections.

$\overline{2}$. CHECK THROTTLE CONTROL MOTOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 153 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

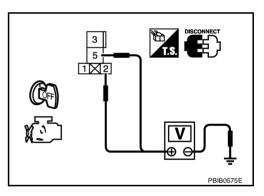

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to power in harness or connectors.

3. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY

Disconnect throttle control motor relay harness connector.



Check voltage between throttle control motor relay terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

>> GO TO 5. OK NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- 15A fuse
- Harness for open or short between throttle control motor relay and battery
 - >> Repair or replace harness or connectors.

$5.\,$ check throttle control motor relay input signal circuit for open and short

Check continuity between ECM terminal 157 and throttle control motor relay terminal 3. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

Revision: 2004 October

EC-445 2004 M45

EC

 D

F

Н

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F33, E33
- Harness for open or short between ECM and throttle control motor relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK THROTTLE CONTROL MOTOR RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check continuity between ECM terminal 26 and throttle control motor relay terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

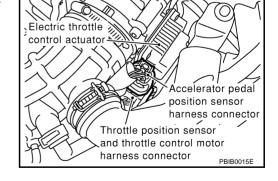
Check the following.

- Harness connectors F34, E34
- Harness for open or short between ECM and throttle control motor relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK THROTTLE CONTROL MOTOR RELAY

Refer to EC-447, "Component Inspection".

OK or NG


OK >> GO TO 10.

NG >> Replace throttle control motor relay.

10. CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN OR SHORT

- Disconnect electric throttle control actuator harness connector.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
3	151	Should not exist
	154	Should exist
6	151	Should exist
	154	Should not exist

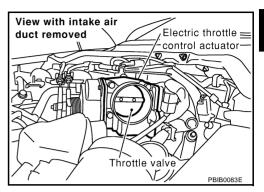
4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

11. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- Remove the intake air duct.
- 2. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 12.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

12. CHECK THROTTLE CONTROL MOTOR

Refer to EC-447, "Component Inspection".

OK or NG

OK >> GO TO 13.

NG >> GO TO 14.

13. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

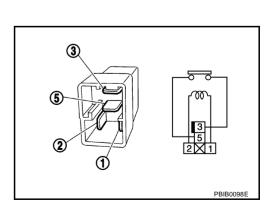
OK >> GO TO 14.

NG >> Repair or replace harness or connectors.

14. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END


Component Inspection THROTTLE CONTROL MOTOR RELAY

1. Apply 12V direct current between relay terminals 1 and 2.

2. Check continuity between relay terminals 3 and 5.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

3. If NG, replace throttle control motor relay.

EC

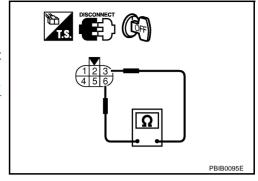
С

G

Н

J

K


ABS002NI

THROTTLE CONTROL MOTOR

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-44, "Accelerator Pedal Released Position Learning"
- 5. Perform EC-44, "Throttle Valve Closed Position Learning".
- 6. Perform EC-44, "Idle Air Volume Learning".

ABS002NM

Remove and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-18, "INTAKE MANIFOLD".

DTC P1124, P1126 THROTTLE CONTROL MOTOR RELAY

PFP:16119

Component Description

ARSOONN

Power supply for the throttle control motor is provided to the ECM via throttle control motor relay. The throttle control motor relay is ON/OFF controlled by the ECM. When the ignition switch is turned ON, the ECM sends an ON signal to throttle control motor relay and battery voltage is provided to the ECM. When the ignition switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not provided to the ECM.

CONSULT-II Reference Value in Data Monitor Mode

ABS002NO

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
THRTL RELAY	Ignition switch: ON	ON

On Board Diagnosis Logic

ABS002NP

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1124 1124	Throttle control motor relay circuit short	ECM detects the throttle control motor relay is stuck ON.	 Harness or connectors (Throttle control motor relay circuit is shorted) Throttle control motor relay
P1126 1126	Throttle control motor relay circuit open	ECM detects a voltage of power source for throttle control motor is excessively low.	 Harness or connectors (Throttle control motor relay circuit is open) Throttle control motor relay

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return

DTC Confirmation Procedure

ABS002NG

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR DTC P1124

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V.

(P) With CONSULT-II

- Turn ignition switch ON and wait at least 1 second. 1.
- Select "DATA MONITOR" mode with CONSULT-II.
- If DTC is detected, go to EC-452, "Diagnostic Procedure".

DATA M	ONITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
		SEF058Y

EC-449 Revision: 2004 October 2004 M45

EC

Α

 D

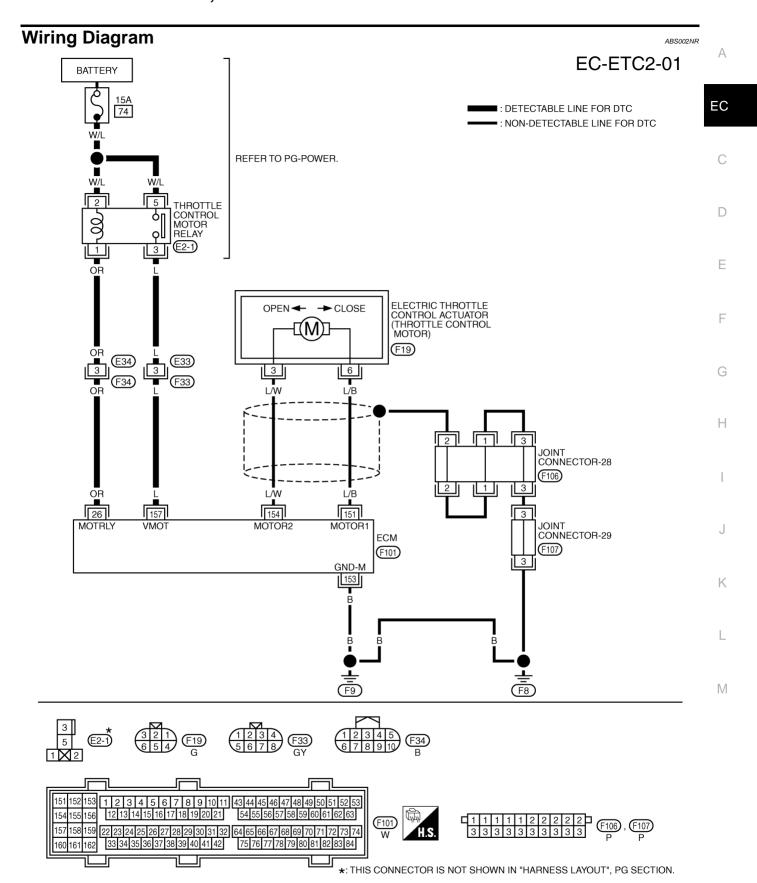
F

Н

With GST

Follow the procedure With CONSULT-II above.

PROCEDURE FOR DTC P1126


(P) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-452, "Diagnostic Procedure" .

₩ith GST

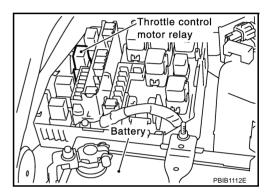
Follow the procedure With CONSULT-II above.

TBWA0299E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

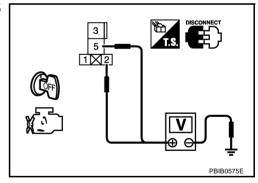

	TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	26 C	OR	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V	
_	157	L	Throttle control motor relay power supply	[Ignition switch; ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

ABS002NS

1. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY

- 1. Turn ignition switch OFF
- 2. Disconnect throttle control motor relay harness connector.



3. Check voltage between throttle control motor relay terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

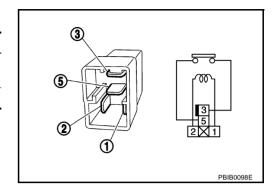
Check the following.

- 15A fuse
- Harness for open or short between throttle control motor relay and battery

>> Repair or replace harness or connectors.

$\overline{3.}$ check throttle control motor relay input signal circuit for open and short 1. Disconnect ECM harness connector. Check continuity between ECM terminal 157 and throttle control motor relay terminal 3. EC Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 5. NG >> GO TO 4. 4. DETECT MALFUNCTIONING PART F Check the following. Harness connectors F33, E33 Harness for open or short between ECM and throttle control motor relav >> Repair open circuit or short to ground or short to power in harness or connectors. ${f 5}$. CHECK THROTTLE CONTROL MOTOR RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT Check continuity between ECM terminal 26 and throttle control motor relay terminal 1. Refer to Wiring Diagram. Н Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG >> GO TO 7. OK NG >> GO TO 6. 6. DETECT MALFUNCTIONING PART Check the following. Harness connectors F34, E34 Harness for open or short between ECM and throttle control motor relay >> Repair open circuit or short to ground or short to power in harness or connectors. 7. CHECK THROTTLE CONTROL MOTOR RELAY M Refer to EC-454, "Component Inspection". OK or NG OK >> GO TO 8. NG >> Replace throttle control motor relay. 8. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component InspectionTHROTTLE CONTROL MOTOR RELAY

ABS0031X

- 1. Apply 12V direct current between relay terminals 1 and 2.
- 2. Check continuity between relay terminals 3 and 5.

Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

3. If NG, replace throttle control motor relay.

DTC P1128 THROTTLE CONTROL MOTOR

PFP:16119

Component Description

ABS002NT

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feed-back to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

EC

F

Α

On Board Diagnosis Logic

ABS002NU

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1128 1128	Throttle control motor circuit short	ECM detects short in both circuits between ECM and throttle control motor.	Harness or connectors (Throttle control motor circuit is shorted.) Electric throttle control actuator (Throttle control motor)

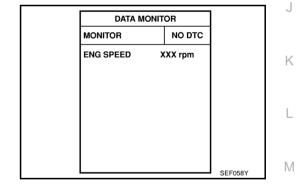
FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

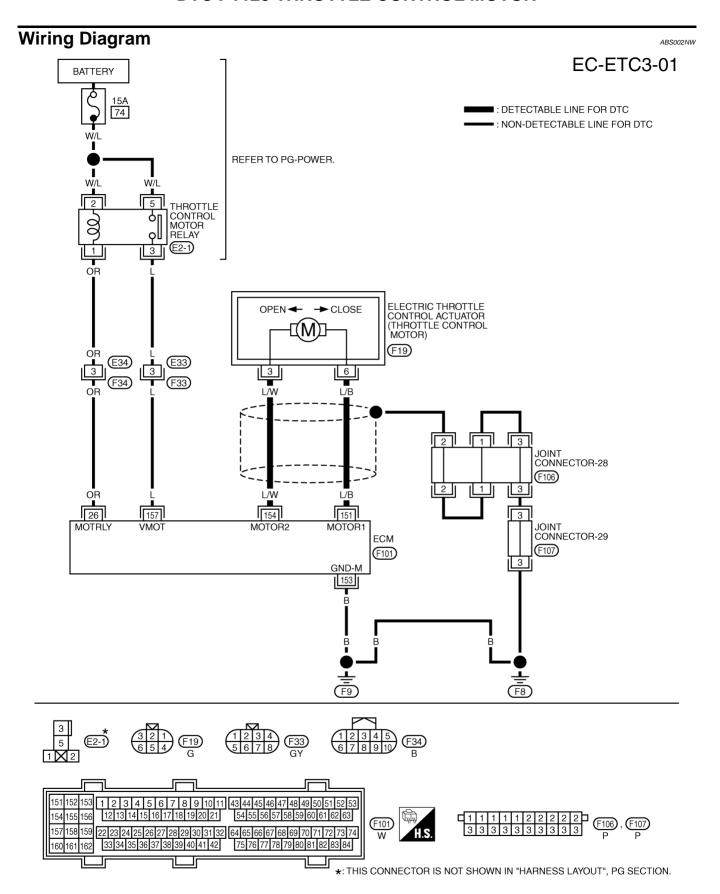
ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure


ABS002NV

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(A) WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-457, "Diagnostic Procedure".

WITH GST

Follow the procedure WITH CONSULT-II above.

TBWA0300E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

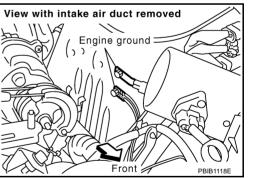
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
151	L/B	Throttle control motor (Open)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully depressed	0 - 14V★
154	L/W	Throttle control motor (Close)	[Ignition switch: ON] • Engine stopped • Selector lever: D • Accelerator pedal: Fully released	0 - 14V★ >> 10.0V/Div 200 us/Div PBIB0061E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

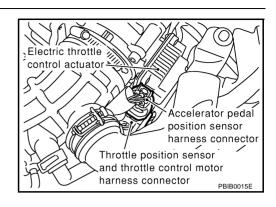
Α

D

F

G

ABS002NX


.

K

$\overline{2}$. CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN OR SHORT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Disconnect ECM harness connector.
- Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
3	151	Should not exist
3	154	Should exist
6	151	Should exist
O	154	Should not exist

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK THROTTLE CONTROL MOTOR

Refer to EC-458, "Component Inspection".

OK or NG

OK >> GO TO 4. NG >> GO TO 5.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

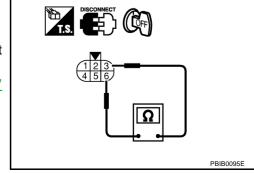
OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

5. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace the electric throttle control actuator.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END


Component Inspection THROTTLE CONTROL MOTOR

ABS002NY

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-44, "Accelerator Pedal Released Position Learning"
- 5. Perform EC-44, "Throttle Valve Closed Position Learning".
- 6. Perform EC-44, "Idle Air Volume Learning".

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

ABS002NZ

Α

Refer to EM-18, "INTAKE MANIFOLD".

EC

С

D

F

Е

G

Н

J

Κ

.

DTC P1140, P1145 IVT CONTROL POSITION SENSOR

PFP:23731

Component Description

ABS00200

Intake valve timing control position sensors are located in the front of cylinder heads in both bank 1 and bank 2.

This sensor uses a Hall IC.

The cam position is determined by the intake primary cam sprocket concave (in four places). The ECM provides feedback to the intake valve timing control for appropriate target valve open-close timing according to drive conditions based on detected cam position.

CONSULT-II Reference Value in Data Monitor Mode

4BS00201

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	–5 - 5°CA
INT/V TIM (B1)	Selector lever: P or N		
INT/V TIM (B2)	Air conditioner switch: OFF	2,000 rpm	Approx. 0 - 20°CA
	No load		

On Board Diagnosis Logic

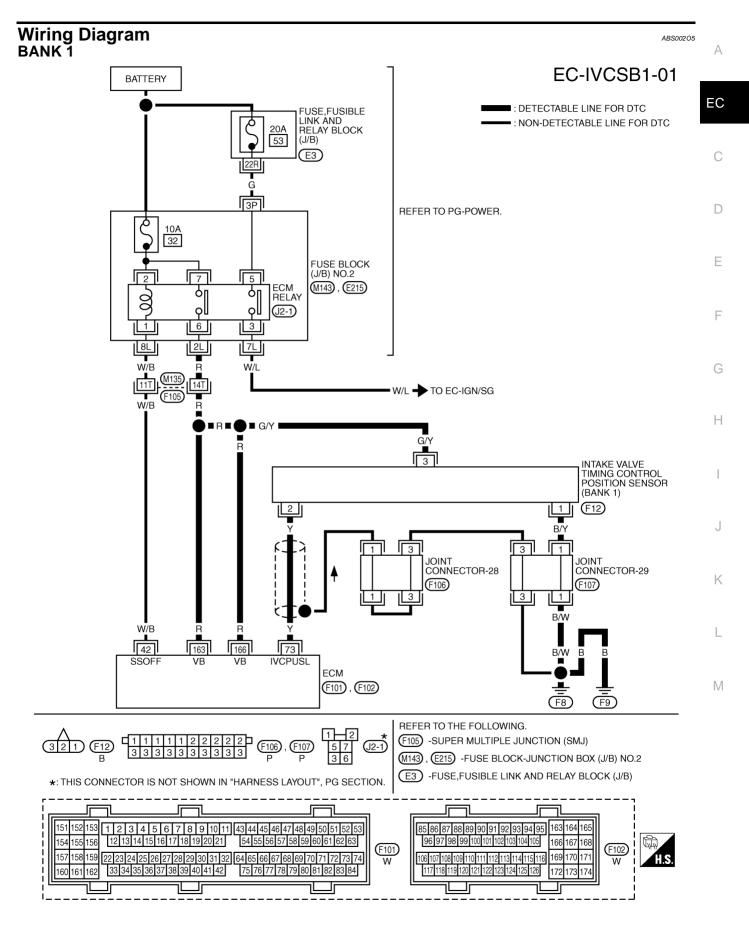
ABS00202

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1140 1140 (bank 1)	Intake valve timing control position sensor circuit		Harness or connectors (Intake valve timing control position sensor circuit is open or shorted)
P1145 1145 (bank 2)		An excessively high or low voltage from the sensor is sent to ECM.	Intake valve timing control position sensor
			Crankshaft position sensor (POS)
			Camshaft position sensor (PHASE)
			Accumulation of debris to the signal pick-up portion of the camshaft

DTC Confirmation Procedure

ABS002O4

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

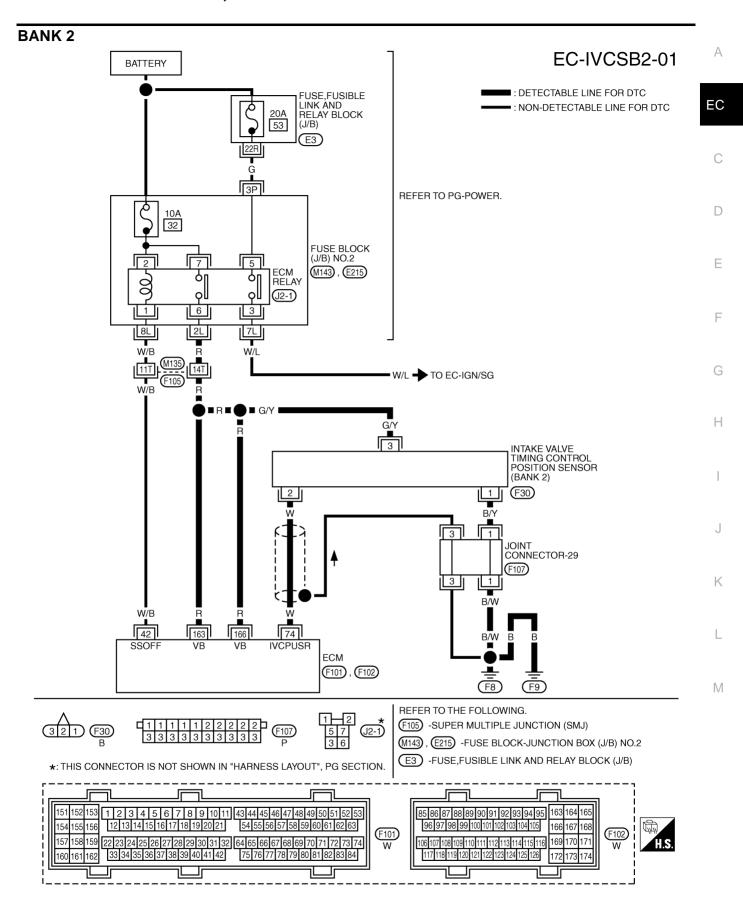
(I) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and wait let it idle for 10 seconds.
- 4. If 1st trip DTC is detected, go to EC-464, "Diagnostic Procedure".

WITH GST

Follow the procedure WITH CONSULT-II above.

TBWA0265E


Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
73	Y	Intake valve timing control position sensor	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle. 	0 - 1.0V★ → 5.0V/Div 20 ms/Div PBIB0054E
73	'	(bank 1)	[Engine is running] ● Engine speed: 2,000 rpm.	0 - 1.0V★ → 5.0V/Div 20 ms/Div PBiB0055E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

TBWA0266E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

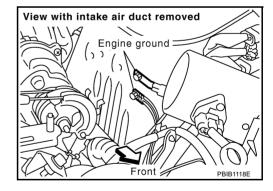
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
74	W	Intake valve timing control position sensor	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle. 	0 - 1.0V★ → 5.0V/Div 20 ms/Div PBIB0054E
17	v	(bank 2)	[Engine is running] ● Engine speed: 2,000 rpm.	0 - 1.0V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

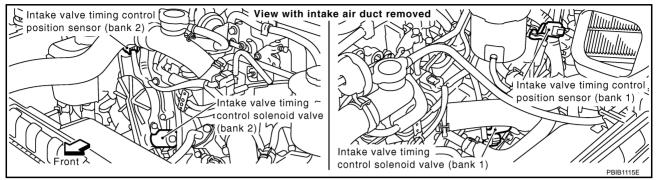
Diagnostic Procedure

ABS00206


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

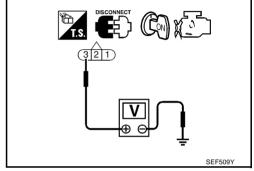
OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR POWER SUPPLY CIRCUIT

Disconnect intake valve timing control position sensor harness connector.



- Turn ignition switch ON.
- Check voltage between intake valve timing control position sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Harness for open or short between intake valve timing control position sensor and ECM
- Harness for open or short between intake valve timing control position sensor and ECM relay
 - >> Repair harness or connectors.

4. CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR GROUND CIRCUIT FOR OPEN AND **SHORT**

- Turn ignition switch OFF. 1.
- Check harness continuity between intake valve timing control position sensor terminal 1 and ground. Refer to Wiring Diagram.

EC-465

Continuity should exist.

Also check harness for short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

DETECT MALFUNCTIONING PART

Check the following.

Joint connector-29

Revision: 2004 October

Harness for open or short between intake valve timing control position sensor and ground

>> Repair open circuit or short to power in harness or connectors.

EC

Н

M

6. CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between the following;
 ECM terminal 73 (bank 1) and intake valve timing control position sensor terminal 2 or
 ECM terminal 74 (bank 2) and intake valve timing control position sensor terminal 2.
 Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK INTAKE VALVE TIMING CONTROL POSITION SENSOR

Refer to EC-466, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace intake valve timing control position sensor.

8. CHECK CRANKSHAFT POSITION SENSOR (POS)

Refer to EC-316, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace crankshaft position sensor (POS).

9. CHECK CAMSHAFT POSITION SENSOR (PHASE)

Refer to EC-321, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace camshaft position sensor (PHASE).

10. CHECK CAMSHAFT

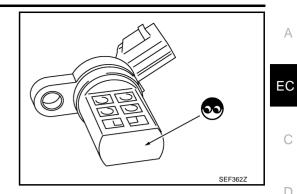
Check accumulation of debris to the signal pick-up portion of the camshaft. Refer to <u>EM-38</u>, "<u>TIMING CHAIN</u>" . OK or NG

OK >> GO TO 11.

NG >> Remove debris and clean the signal pick-up cutout of camshaft.

11. CHECK INTERMITTENT INCIDENT

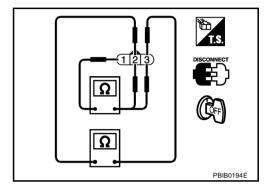
Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection INTAKE VALVE TIMING CONTROL POSITION SENSOR

ABS00207

- 1. Disconnect intake valve timing control position sensor harness connector.
- 2. Loosen the fixing bolt of the sensor.
- Remove the sensor.


Visually check the sensor for chipping.

Check resistance as shown below.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]	
3 (+) - 1 (-)		
2 (+) - 1 (-)	Except 0 or ∞	
3 (+) - 2 (-)		

6. If NG, replace intake valve timing control position sensor.

ABS00208

Removal and Installation INTAKE VALVE TIMING CONTROL POSITION SENSOR

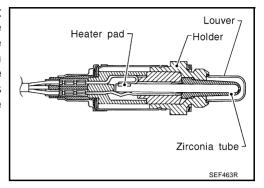
Refer to EM-38, "TIMING CHAIN".

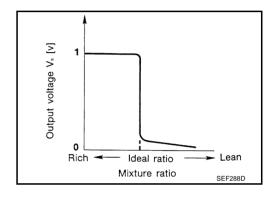
Н

Α

С

D


DTC P1143, P1163 HO2S1


PFP:22690

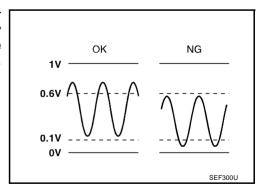
Component Description

ABS00209

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1 to 0V.

CONSULT-II Reference Value in Data Monitor Mode

ABS002OA


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

On Board Diagnosis Logic

ABS002OB

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the rich output is sufficiently high and whether the lean output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1143	Heated oxygen sensor 1 lean shift monitoring	The maximum and minimum voltage from the sensor are not reached to the specified voltages.	Heated oxygen sensor 1
1143 (Bank 1)			 Heated oxygen sensor 1 heater
P1163			Fuel pressure
1163			Fuel injector
(Bank 2)			Intake air leaks

DTC Confirmation Procedure

ABS002OC

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "HO2S1 (B1) P1143" of "HO2S1" or "HO2S1 (B2) P1163" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4. Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 5.

HO2S1 (B1) P1		
OUT OF CONDITION		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx .c	
VHCL SPEED SEN	DDID05405	
		PBIB0546E

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 40 seconds or more.)

ENG SPEED	1,100 - 2,000 rpm
VHCL SPEED SE	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	1.6 - 12.0 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-470, "Diagnostic Procedure".

HO2S1 (B1) P1143		
TESTING		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx °c	
VHCL SPEED SEN	XXX km/h	DDID05475
		PBIB0547E

HO2S1 (B1) P1143	
COMPLETED	

EC

C

D

Α

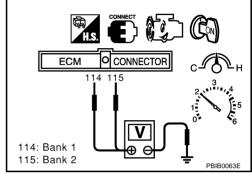
Е

G

Н

. 1

K


Overall Function Check

ABS0020

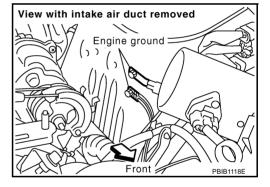
Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 114 [HO2S1(B1) signal] or 115 [HO2S1(B2) signal] and ground.
- 3. Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is over 0.6V at least 1 time.
- The minimum voltage is over 0.1V at least 1 time.
- 4. If NG, go to EC-470, "Diagnostic Procedure".

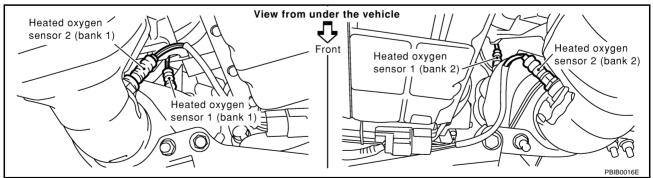
ABS0020E

Diagnostic Procedure


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

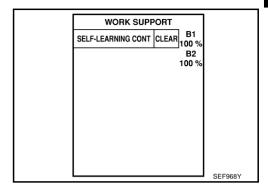
OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten corresponding heated oxygen sensor 1.


Tightening torque: 40 - 50 N·m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

>> GO TO 3.

$\overline{3}$. CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- Clear the self-learning control coefficient by touching "CLEAR".
- Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0174 detected? Is it difficult to start engine?

Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF.
- Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to EC-62, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0174 detected? Is it difficult to start engine?

Yes >> Perform trouble diagnosis for DTC P0171, P0174. Refer to EC-266.

No >> GO TO 4.

4. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-164, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace malfunctioning heated oxygen sensor 1.

5. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-472, "Component Inspection".

OK or NG

OK >> GO TO 6.

Revision: 2004 October

NG >> Replace malfunctioning heated oxygen sensor 1.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". For circuit, refer to EC-216, "Wiring Diagram".

EC-471

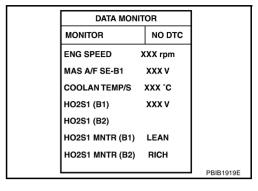
>> INSPECTION END

Mass air flow sensor (with intake air temperature sensor) 🛭

Front

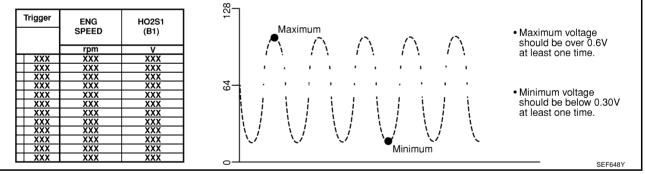
EC

F


Н

Component Inspection HEATED OXYGEN SENSOR 1

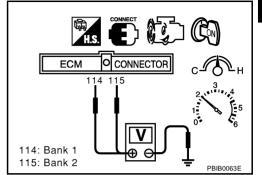
ABS002OF


(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- Select "HO2S1 (B1)/(B2)" and "HO2S1 MNTR (B1)/(B2)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- 5. Touch "RECORD" on CONSULT-II screen.

- 6. Check the following.
 - "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Bank 1 cycle 1 2 3 4 5
1
HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R
Bank 2
cycle 1 2 3 4 5
HO2S1 MNTR (B2) R-L-R-L-R-L-R-L-R-L-R
B means HO2S1
MNTR (B1)/(B2) indicates RICH
L means HO2S1
MNTR (B1)/(B2) indicates LEAN SEF647Y


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread
 Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 114 [HO2S1 (B1) signal] or 115 [HO2S1 (B2) signal] and ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least 1 time.
 - The minimum voltage is below 0.3V at least 1 time.
 - The voltage never exceeds 1.0V.

```
1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V
```


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

Refer to EM-22, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

ABS002OG

EC

Α

С

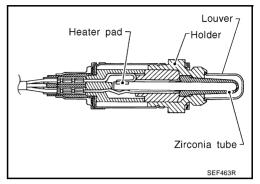
D

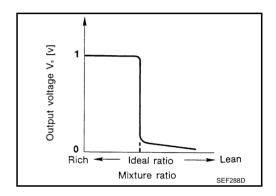
Е

G

Н

J


K


PFP:22690

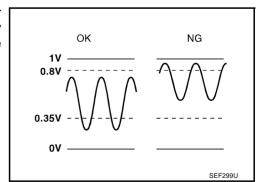
Component Description

ABS002OH

The heated oxygen sensor 1 is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1 to 0V.

CONSULT-II Reference Value in Data Monitor Mode

ABS00201


Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1) HO2S1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1) HO2S1 MNTR (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ←→ RICH Changes more than 5 times during 10 seconds.

On Board Diagnosis Logic

ABS002OJ

To judge the malfunction, the output from the heated oxygen sensor 1 is monitored to determine whether the rich output is sufficiently high, and lean output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1144 1144 (Bank 1) P1164 1164 (Bank 2)	Heated oxygen sensor 1 rich shift monitoring	The maximum and minimum voltages from the sensor are beyond the specified voltages.	 Heated oxygen sensor 1 Heated oxygen sensor 1 heater Fuel pressure Fuel injector

DTC Confirmation Procedure

ABS002OK

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and wait at least 5 seconds.
- 3. Turn ignition switch ON and select "HO2S1 (B1) P1144" or "HO2S1 (B2) P1164" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4. Touch "START".
- 5. Start engine and let it idle for at least 3 minutes.

NOTE:

Never raise engine speed above 3,000 rpm after this step. If the engine speed limit is exceeded, return to step 5.

	HO2S1 (B1) P1	144	
	OUT OF CONDITION		
	MONITOR		
	ENG SPEED	XXX rpm	
	B/FUEL SCHDL	XXX msec	
	COOLAN TEMP/S	xxx .c	
	VHCL SPEED SEN	XXX km/h	
'		•	PBIB0548E

When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately more than 40 seconds.)

ENG SPEED	1,100 - 2,000 rpm
VHCL SPEED SE	Less than 100 km/h (62 MPH)
B/FUEL SCHDL	1.6 - 12.0 msec
Selector lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-476, "Diagnostic Procedure".

HO2S1 (B1) P1	144	
TESTING		
MONITOR		
ENG SPEED	XXX rpm	
B/FUEL SCHDL	XXX msec	
COOLAN TEMP/S	xxx °c	
VHCL SPEED SEN	XXX km/h	PBIB0549E
		FDIBU549E

HO2S1 (B1) P1144	\exists
COMPLETED	
	SEC772C

EC

C

D

Α

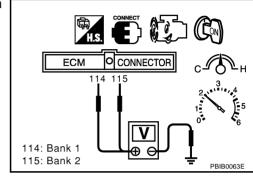
Е

Н

J

K

L


Overall Function Check

ARSON2OI

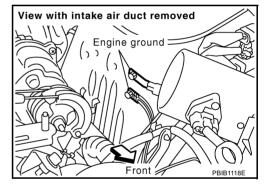
Use this procedure to check the overall function of the heated oxygen sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Set voltmeter probes between ECM terminal 114 [HO2S1(B1) signal] 115 [HO2S1(B2) signal] and ground.
- 3. Check one of the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least 1 time.
- The minimum voltage is below 0.35V at least 1 time.
- 4. If NG, go to EC-476, "Diagnostic Procedure".

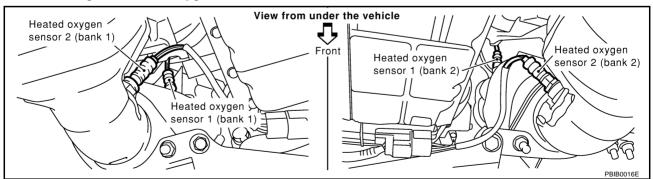
ABS002OM

Diagnostic Procedure


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

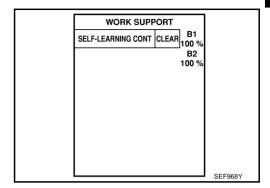
OK or NG


OK >> GO TO 4.

NG >> Repair or replace ground connections.

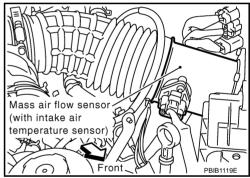
2. RETIGHTEN HEATED OXYGEN SENSOR 1

Loosen and retighten heated oxygen sensor 1.


Tightening torque: 40 - 50 N·m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

>> GO TO 3.

$\overline{3}$. clear the self-learning data


(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172, P0175 detected? Is it difficult to start engine?

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-62</u>, "HOW TO ERASE <u>EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172, P0175 detected? Is it difficult to start engine?

Yes or No

Yes >> Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-275.

No >> GO TO 4.

EC

С

D

Е

G

Н

4. CHECK HO2S1 CONNECTOR FOR WATER

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 1 harness connector.

Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 1 HEATER

Refer to EC-164, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 1.

6. CHECK HEATED OXYGEN SENSOR 1

Refer to EC-478, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace malfunctioning heated oxygen sensor 1.

7. CHECK INTERMITTENT INCIDENT

Refer to <u>EC-132</u>, <u>"TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT"</u>. For circuit, refer to <u>EC-216</u>, <u>"Wiring Diagram"</u>.

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 1

ATED OXYGEN SENSOR 1

ABS002ON

(P) With CONSULT-II

1. Start engine and warm it up to normal operating temperature.

- 2. Select "MANU TRIG" and adjust "TRIGGER POINT" to 100% in "DATA MONITOR" mode with CONSULT-II.
- Select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 4. Hold engine speed at 2,000 rpm under no load during the following steps.
- Touch "RECORD" on CONSULT-II screen.

DATA MON	ITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
COOLAN TEMP/S	xxx °c	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	xxx v	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	RICH	
		PBIB2025E

Α

EC

F

Н

K

M

- Check the following.
 - "HO2S1 MNTR (B1)/(B2)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" more than 5 times in 10 seconds.
 - 5 times (cycles) are counted as shown at right.
 - "HO2S1 (B1)/(B2)" voltage goes above 0.6V at least once.
 - "HO2S1 (B1)/(B2)" voltage goes below 0.3V at least once.
 - "HO2S1 (B1)/(B2)" voltage never exceeds 1.0V.

Bank 1	cycle	1 2 3	4 5
HO2S1	MNTR (B1)	R-L-R-L-R-L-I	R-L-R-L-R
Bank 2			
	cycle	1 2 3	4 5
HO2S1	MNTR (B2)	R-L-R-L-R-L-	R-L-R-L-R
R means	HO2S1		
MNTR (B1	1)/(B2) indica	ates RICH	
L means I	HO2S1		
MNTR (B1	1)/(B2) indica	ates LEAN	SEF647Y

			1 28	1									
Trigger	ENG	HO2S1	_		Maxin								
	SPEED	(B1)		Ι,	olio axiii ●	/`\	,	<u>~</u>			\sim		 Maximum voltage should be over 0.6V
1 1	rpm	V	1	l !	`\	$i \lambda$	- /	ì	!	ì	/ \		at least one time.
XXX	XXX	XXX	1	l '	•		•	•	•	•			at least one time.
XXX	XXX	XXX	1			1 1	•	1		1	i		
XXX	XXX	XXX	l										
XXX	XXX	XXX	29-	٠.	•	: 1	•		•	•			NAC - Construction of the construction
XXX	XXX	XXX	_	Ι.				,					Minimum voltage
XXX	XXX	XXX	1	<u> </u>	į	1 1	i	!	i	!	1 1		should be below 0.30V
XXX	XXX	XXX	1	l\ i	1	<i>i</i> \	!	- 1	!	i	! i		at least one time.
XXX	XXX	XXX	1	li !	i	; i	- !	i	-	i	1 1		
XXX	XXX	XXX	1	11 i	! !	<i>i</i> \	, i	,	i	\	<i>i</i> '		
XXX	XXX	XXX	1	\ <u></u>	_/		ackslash	`(S '	•	,	`	
XXX	XXX	XXX	1						[*] Minir	num			
XXX	XXX	XXX	ا 										SEE649V
													SEF648Y

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal 114 [HO2S1 (B1) signal] or 115 [HO2S1 (B2) signal] and ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
 - The voltage fluctuates between 0 to 0.3V and 0.6 to 1.0V more than 5 times within 10 seconds.
 - The maximum voltage is over 0.6V at least 1 time.
 - The minimum voltage is below 0.3V at least 1 time.
 - The voltage never exceeds 1.0V.

1 time: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V 2 times: 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V \to 0.6 - 1.0V \to 0 - 0.3V

ECM OCONNECTOR C H 114: Bank 1 115: Bank 2

CAUTION:

• Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

Revision: 2004 October EC-479 2004 M45

 Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 1

ABS00200

Refer to EM-22, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

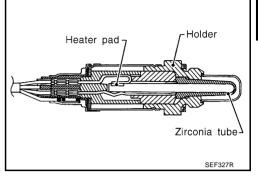
DTC P1146, P1166 HO2S2

PFP:226A0

Component Description

ABS002OP

Α


EC

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

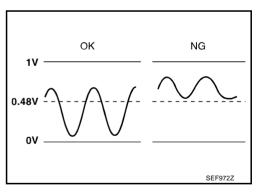
Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

ARSONOO

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITI	CONDITION			
HO2S2 (B1) HO2S2 (B2)	Warm-up condition After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle up to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V	(
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Warm-up condition After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle up to 3,000 rpm quickly.	LEAN ←→ RICH		


On Board Diagnosis Logic

ABS002OR

Н

M

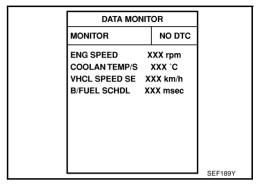
The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1146 1146 (Bank 1)	Heated oxygen sensor 2	The minimum voltage from the sensor is	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2
P1166 1166 (Bank 2)	minimum voltage monitoring	not reached to the specified voltage.	Fuel pressure Fuel injector

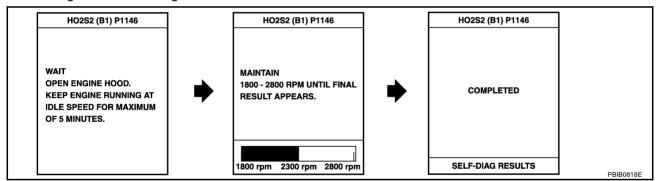
DTC Confirmation Procedure

ABS002OS

NOTE


If DTC confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II


TESTING CONDITION:

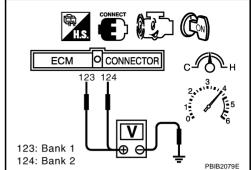
For better results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30 °C (32 to 86 °F).

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
 - If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).

- Open engine hood.
- 8. Select "HO2S2 (B1) P1146" or "HO2S2 (B2) P1166" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and following the instruction of CONSULT-II.

- 10. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to EC-488, "Diagnostic Procedure".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

Overall Function Check


ABS002OT

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 123 [HO2S2 (B1) signal] or 124 [HO2S2 (B2) signal] and ground.

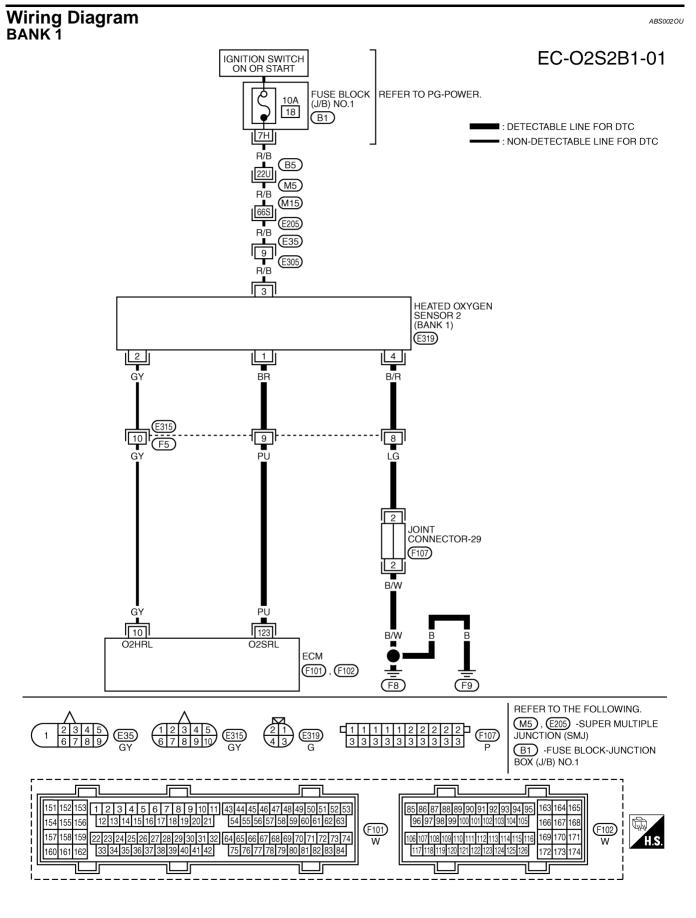
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.48V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in "D" position.
 - The voltage should be below 0.48V at least once during this procedure.
- 8. If NG, go to EC-488, "Diagnostic Procedure".

Α

EC

С

D


Е

F

G

Н

М

TBWA0276E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
123	PU	Heated oxygen sensor 2 (bank 1)	 Engine is running] Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V

EC

Α

С

D

Е

F

G

Н

. I

K

L

BANK 2 EC-O2S2B2-01 IGNITION SWITCH ON OR START FUSE BLOCK REFER TO PG-POWER. 10A (J/B) NO.1 18 (B1) : DETECTABLE LINE FOR DTC ■: NON-DETECTABLE LINE FOR DTC R/B 22U R/B 66S (M5) R/B **HEATED OXYGEN** SENSOR 2 (BANK 2) (E318) 4 3 4 JOINT CONNECTOR-29 (F107) 11 124 B/W O2HRR O2SRR ECM ╧ (F101), (F102) (F8) (F9) REFER TO THE FOLLOWING. M5, E205 -SUPER MULTIPLE JUNCTION (SMJ) (B1) -FUSE BLOCK-JUNCTION BOX (J/B) NO.1 1 2 3 4 5 6 7 8 9 10 11 43 44 45 46 47 48 49 50 51 52 53 85 86 87 88 89 90 91 92 93 94 95 163 164 165 54 55 56 57 58 59 60 61 62 63 166 167 168 154 155 156 (F101) (F102) 169 170 171 157 158 159 22 23 24 25 26 27 28 29 30 31 32 64 65 66 67 68 69 70 71 72 73 74 W 33 34 35 36 37 38 39 40 41 42 75 76 77 78 79 80 81 82 83 84 172 173 174

TBWA0277E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
124	В	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V

EC

Α

С

D

Е

F

Н

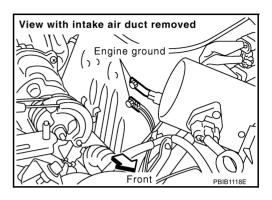
G

. I

K

L

Diagnostic Procedure

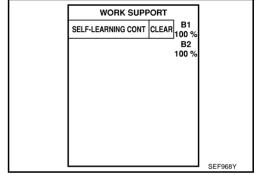

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

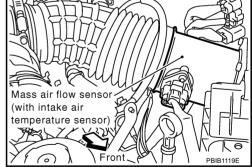
OK >> GO TO 2.

NG >> Repair or replace ground connections.



ABS002OV

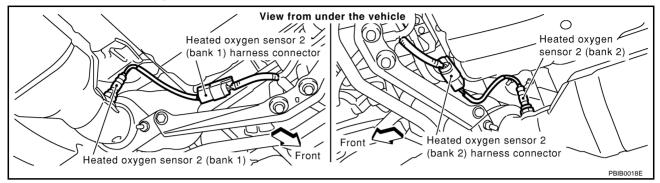
2. CLEAR THE SELF-LEARNING DATA


(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-62, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?


Yes or No

Yes >> Perform trouble diagnosis for DTC P0172, P0175. Refer to <u>EC-275</u>.

No >> GO TO 3.

3. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.

3. Check harness continuity between HO2S2 terminal 4 and ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E315, F5
- Joint connector-29
- Harness open or short between HO2S2 and ground

>> Repair open circuit or short to power in harness or connectors.

EC

С

D

F

F

G

Н

J

11

 \mathbb{N}

5. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
	ECM	Sensor	Dank
P1146	123	1	1
P1166	124	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
	ECM	Sensor	Dank
P1146	123	1	1
P1166	124	1	2

Continuity should not exist.

4. Also check harness for short to short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E315, F5
- Harness open or short between HO2S2 and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-490, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace malfunctioning heated oxygen sensor 2.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

ABS002OW

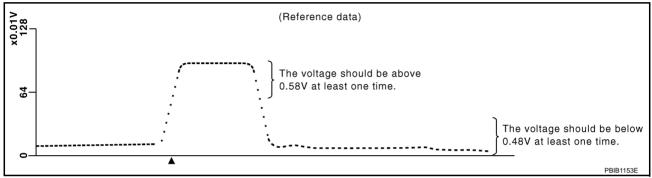
(P) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- Let engine idle for 1 minute.

5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.

ACTIVE TES		
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S2 (B1)	xxx v	
HO2S2 (B2)	xxx v	
HO2S2 MNTR (B1)	LEAN	
HO2S2 MNTR (B2)	RICH	
		PBIB1918E

Α


EC

F

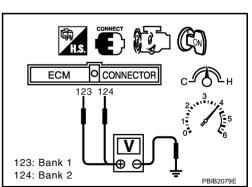
Н

M

6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to $\pm 25\%$.

"HO2S2 (B1)/(B2)" should be above 0.58V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 123 [HO2S2 (B1) signal] or 124 [HO2S2 (B2) signal] and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.)
 The voltage should be above 0.58V at least once during this
 procedure.
 - If the voltage is above 0.58V at step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be below 0.48V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

ABS002OX

Refer to EM-22, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

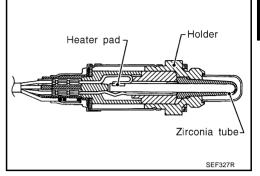
DTC P1147, P1167 HO2S2

PFP:226A0

Component Description

ABS002OY

Α


EC

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the heated oxygen sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

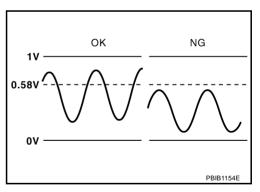
Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

ABS0020Z

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDI	SPECIFICATION		
HO2S2 (B1) HO2S2 (B2)	Warm-up condition After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle up to 3,000 rpm quickly.	0 - 0.3V ←→ Approx. 0.6 - 1.0V	
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Warm-up condition After keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	Revving engine from idle up to 3,000 rpm quickly.	LEAN ←→ RICH	


On Board Diagnosis Logic

ABS002P0

Н

M

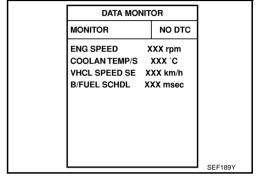
The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity before the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1147 1147 (Bank 1)	Heated oxygen sensor 2	The maximum voltage from the sensor is	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2
P1167 1167 (Bank 2)	maximum voltage monitoring	not reached to the specified voltage.	Fuel pressureFuel injectorIntake air leaks

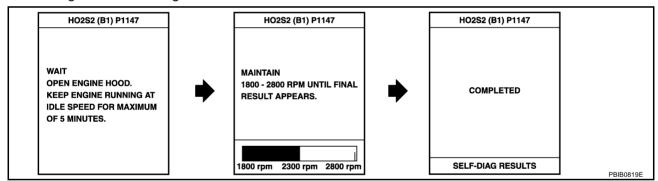
DTC Confirmation Procedure

ABS002P1

NOTE:


If DTC confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II


TESTING CONDITION:

For better results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30 °C (32 to 86 °F).

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
 - If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).

- Open engine hood.
- 8. Select "HO2S2 (B1) P1147" or "HO2S2 (B2) P1167" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and following the instruction of CONSULT-II.

- 10. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to EC-500, "Diagnostic Procedure".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

Overall Function Check

ABS002P2

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 123 [HO2S2 (B1) signal] or 124 [HO2S2 (B2) signal] and ground.

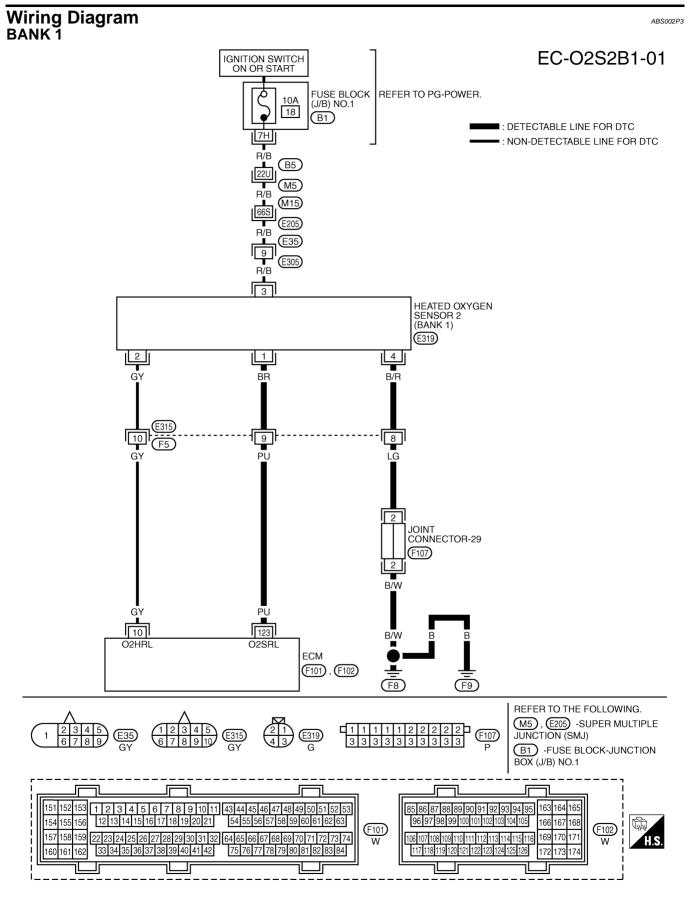
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.58V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be above 0.58V at least once during this procedure.
- 8. If NG, go to EC-500, "Diagnostic Procedure".

Α

EC

С

D


Е

F

G

Н

K

TBWA0276E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
123	PU	Heated oxygen sensor 2 (bank 1)	 [Engine is running] Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V

EC

Α

С

D

Е

F

G

Н

K

L

BANK 2 EC-O2S2B2-01 IGNITION SWITCH ON OR START FUSE BLOCK REFER TO PG-POWER. 10A (J/B) NO.1 18 (B1) : DETECTABLE LINE FOR DTC ■: NON-DETECTABLE LINE FOR DTC R/B 22U R/B 66S (M5) R/B **HEATED OXYGEN** SENSOR 2 (BANK 2) (E318) 4 4 3 4 2 JOINT CONNECTOR-29 (F107) 11 124 B/W O2HRR O2SRR ECM -(F101), (F102) (F8) (F9) REFER TO THE FOLLOWING. M5, E205 -SUPER MULTIPLE JUNCTION (SMJ) (B1) -FUSE BLOCK-JUNCTION BOX (J/B) NO.1 1 2 3 4 5 6 7 8 9 10 11 43 44 45 46 47 48 49 50 51 52 53 85 86 87 88 89 90 91 92 93 94 95 163 164 165 166 167 168 154 155 156 54 55 56 57 58 59 60 61 62 63 (F101) (F102) 169 170 171 157 158 159 22 23 24 25 26 27 28 29 30 31 32 64 65 66 67 68 69 70 71 72 73 74 W 33 34 35 36 37 38 39 40 41 42 75 76 77 78 79 80 81 82 83 84 172 173 174

TBWA0277E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
124	В	Heated oxygen sensor 2 (bank 2)	 [Engine is running] Revving engine from idle up to 3,000 rpm quickly after the following conditions are met. Warm-up condition Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V

EC

Α

С

D

Е

F

G

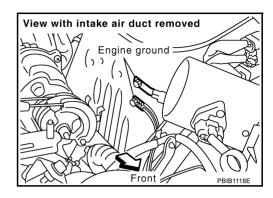
Н

J

K

L

Diagnostic Procedure

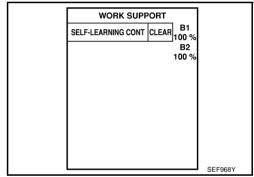

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

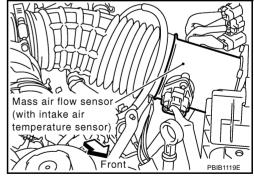
OK >> GO TO 4.

NG >> Repair or replace ground connections.



ABS002P4

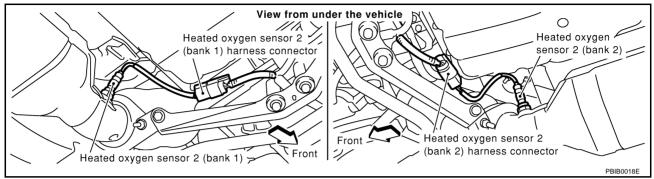
2. CLEAR THE SELF-LEARNING DATA


(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Make sure DTC P0102 is displayed.
- 6. Erase the DTC memory. Refer to <u>EC-62, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 7. Make sure DTC P0000 is displayed.
- 8. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?


Yes or No

Yes >> Perform trouble diagnosis for DTC P0171or P0174. Refer to <u>EC-266</u>.

No >> GO TO 3.

3. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect heated oxygen sensor 2 harness connector.

3. Check harness continuity between HO2S2 terminal 4 and ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E315, F5
- Joint connector-29
- Harness open or short between HO2S2 and ground

>> Repair open circuit or short to power in harness or connectors.

EC

С

D

F

F

G

Н

J

K

L

 \mathbb{N}

5. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dank
P1147	123	1	1
P1167	124	1	2

Continuity should exist.

Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
ы	ECM	Sensor	Dank
P1147	123	1	1
P1167	124	1	2

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E315, F5
- Harness open or short between HO2S2 and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-502, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace malfunctioning heated oxygen sensor 2.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

ABS002P5

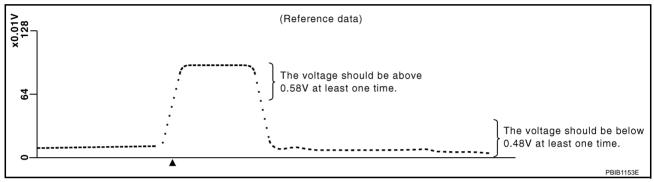
(P) With CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- Let engine idle for 1 minute.

5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.

ACTIVE TES		
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S2 (B1)	xxx v	
HO2S2 (B2)	xxx v	
HO2S2 MNTR (B1)	LEAN	
HO2S2 MNTR (B2)	RICH	
	•	PBIB1918E

Α


EC

F

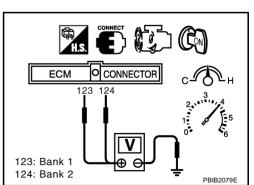
Н

M

6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to $\pm 25\%$.

"HO2S2 (B1)/(B2)" should be above 0.58V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.48V at least once when the "FUEL INJECTION" is -25%.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 123 [HO2S2 (B1) signal] or 124 [HO2S2 (B2) signal] and ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.)
 The voltage should be above 0.58V at least once during this
 procedure.
 - If the voltage is above 0.58V at step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position.
 - The voltage should be below 0.48V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

ABS002P6

Refer to EM-22, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

DTC P1148, P1168 CLOSED LOOP CONTROL

DTC P1148, P1168 CLOSED LOOP CONTROL

PFP:22690

On Board Diagnosis Logic

ABS002P7

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1148 1148 (Bank 1)	Closed loop control	The closed loop control function for bank 1 does not operate even when vehicle is driving in the specified condition.	The heated oxygen sensor 1 circuit is open or shorted.
P1168 1168 (Bank 2)	function	The closed loop control function for bank 2 does not operate even when vehicle is driving in the specified condition.	Heated oxygen sensor 1Heated oxygen sensor 1 heater

DTC Confirmation Procedure

ABS002P8

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Never raise engine speed above 3,000 rpm during the DTC Confirmation Procedure. If the engine speed limit is exceeded, retry the procedure from step 2.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds,
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Hold engine speed at 2,000 rpm and check one of the following.
- "HO2S1 (B1)/(B2)" voltage should go above 0.70V at least once.
- "HO2S1 (B1)/(B2)" voltage should go below 0.21V at least once.
 If the check result is NG, perform <u>EC-506</u>, "<u>Diagnostic Procedure</u>".

If the check result is OK, perform the following step.

- 5. Let engine idle at least 5 minutes.
- Maintain the following condition at least 50 consecutive seconds.

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
COOLAN TEMP/S	xxx °c	
HO2S1 (B1)	xxx v	
HO2S1 (B2)	xxx v	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	RICH	
		PBIB2025E

B/FUEL SCHDL	4.0 msec or more
ENG SPEED	More than 1,300 rpm
Selector lever	Suitable position
VHCL SPEED SE	More than 71 km/h (44 MPH)

During this test, P0132 and/or P0152 may be displayed on CONSULT-II screen.

7. If DTC is detected, go to EC-506, "Diagnostic Procedure".

Revision: 2004 October **EC-505** 2004 M45

EC

Α

Г

Е

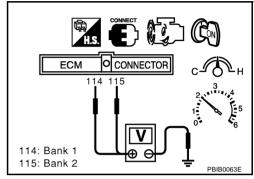
Н

ı

IZ.

L

DTC P1148, P1168 CLOSED LOOP CONTROL


Overall Function Check

ARS002PG

Use this procedure to check the overall function of the closed loop control. During this check, a DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds,
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 114 [HO2S1 (B1) signal] or 115 [HO2S1 (B2) signal] and ground.
- Check the following with engine speed held at 2,000 rpm constant under no-load.
- The voltage should go above 0.70V at least once.
- The voltage should go below 0.21V at least once.
- 7. If NG, go to EC-506, "Diagnostic Procedure".

Diagnostic Procedure

ABS002PA

Perform trouble diagnosis for "DTC P0133, P0153". Refer to $\underline{\text{EC-224}}$.

DTC P1211 TCS CONTROL UNIT

DTC P1211 TCS CONTROL UNIT

PFP:47850

Description

ABS002PB

Α

EC

D

F

Н

The malfunction information related to TCS is transferred through the CAN communication line from VDC/TCS/ABS control unit to ECM.

TCS/ABS control unit to ECM.

Be sure to erase the malfunction information such as DTC not only for VDC/TCS/ABS control unit but also for ECM after TCS related repair.

On Board Diagnosis Logic

ABS002PC

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1211	TCS control unit	VDO/TOO/ADO	VDC/TCS/ABS control unit
1211		VDC/TCS/ABS control unit.	TCS related parts

DTC Confirmation Procedure

ABS002PD

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 60 seconds.
- 4. If 1st trip DTC is detected, go to EC-507, "Diagnostic Procedure"

DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

WITH GST

Follow the procedure WITH CONSULT-II above.

Diagnostic Procedure

ABS002PE

Go to BRC-11, "TROUBLE DIAGNOSIS".

DTC P1212 TCS COMMUNICATION LINE

DTC P1212 TCS COMMUNICATION LINE

PFP:47850

Description

NOTE:

If DTC P1212 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-143, "DTC U1000, U1001 CAN COMMUNICATION LINE".

This CAN communication line is used to control the smooth engine operation during the TCS operation. Pulse signals are exchanged between ECM and VDC/TCS/ABS control unit.

Be sure to erase the malfunction information such as DTC not only for VDC/TCS/ABS control unit but also for ECM after TCS related repair.

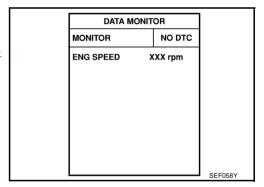
On Board Diagnosis Logic

ABS002PG

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1212 1212	TCS communication line	ECM can not receive the information from VDC/TCS/ABS control unit continuously.	 Harness or connectors (The CAN communication line is open or shorted.) VDC/TCS/ABS control unit Dead (Weak) battery

DTC Confirmation Procedure


ABS002PH

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 10 seconds.
- If a 1st trip DTC is detected, go to <u>EC-508</u>, "<u>Diagnostic Procedure</u>".

WITH GST

Follow the procedure WITH CONSULT-II above.

Diagnostic Procedure

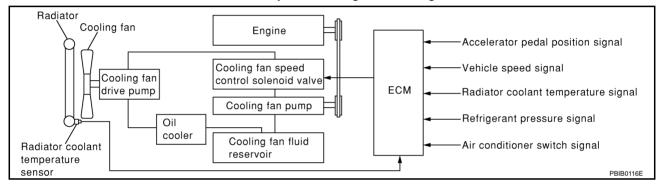
ABS002PI

Go to BRC-11, "TROUBLE DIAGNOSIS".

DTC P1217 ENGINE OVER TEMPERATURE

PFP:00000

Description


If DTC P1217 is displayed with DTC P1119 or P1480, first perform the trouble diagnosis for DTC P1119 or P1480. Refer to EC-434, "DTC P1119 RADIATOR COOLANT TEMPERATURE SENSOR" or EC-578, "DTC P1480 COOLING FAN SPEED CONTROL SOLENOID VALVE".

SYSTEM DESCRIPTION

This system controls the cooling fan operating speed. The opening of the cooling fan speed control solenoid valve changes to control oil pressure provided to the cooling fan drive pump.

This system consists of the cooling fan pump, cooling fan drive pump, cooling fan speed control solenoid valve, oil cooler, cooling fan fluid reservoir, etc.

The cooling fan pump is operated by engine with the drive belts and provides oil pressure to the cooling fan drive pump which operates the cooling fan. The cooling fan speed control solenoid valve is installed between the cooling fan pump and cooling fan drive pump. The solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the solenoid valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions.

COOLING FAN SPEED CONTROL

Sensor	Input signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed			
Accelerator pedal position sensor	Accelerator pedal position			
Radiator coolant temperature sensor	Radiator coolant temperature	Cooling fan speed control	Cooling fan speed control solenoid valve	
Refrigerant pressure sensor	Refrigerant pressure	-	Solenoid valve	
Wheel sensors*	Vehicle speed			
A/C auto amp.*	Air conditioner switch signal			

^{*:} This signal is sent to the ECM through CAN communication line.

The ECM controls the cooling fan speed corresponding to the engine speed, the radiator coolant temperature, refrigerant pressure, vehicle speed, air conditioner switch signal, etc.

The ECM determines the target fan speed based on the basic fan speed considering the radiator coolant temperature and the engine speed. The ECM controls fan speed between 0 to 2,550 rpm.

When the cooling fan speed control solenoid valve is malfunctioning (does not operate), the cooling fan is operated at the maximum speed by engine through the drive belts.

Cooling Fan Basic Speed

unit: rpm

Air condi- tioner		Vehicle speed		
	Refrigerant pressure	Less than 20 km/h (12 MPH)	20 - 80 km/h (12 - 50 MPH)	More than 80 km/h (50 MPH)
OFF	-	300	300	300

Revision: 2004 October **EC-509** 2004 M45

EC

Α

)

0

Н

.

Γ\

Air condi-		Vehicle speed		
tioner	Refrigerant pressure	Less than 20 km/h (12 MPH)	20 - 80 km/h (12 - 50 MPH)	More than 80 km/h (50 MPH)
	Less than 680 kPa (6.94 kg/cm ² , 98.6 psi)	700	400	300
ON	680 - 1,660 kPa (6.94 - 16.93 kg/cm ² , 98.6 - 240.7 psi)	900	700	300
ON	1,660 - 1,960 kPa (16.93 - 19.99 kg/cm ² , 240.7 - 284.2 psi)	1,100	1,100	1,250
	More than 1,960 kPa (19.99 kg/cm ² , 284.2 psi)	1,250	1,200	1,250

COMPONENT DESCRIPTION

Cooling Fan Speed Control Solenoid Valve

The cooling fan speed control solenoid valve uses a ON/OFF duty to control the pressure of the cooling fan fluid from the cooling fan pump. This solenoid valve is moved by ON/OFF pulse from the ECM. The longer the ON pulse is sent to the solenoid valve, the lower speed the cooling fan operates.

CONSULT-II Reference Value in Data Monitor Mode

ABS00335

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	
TRGT FAN RPM	Ignition switch: ON (Engine stopped)	0 rpm	
	Engine: Idle	300 - 2,550 rpm	

On Board Diagnosis Logic

ABS00226

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise.

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			Harness or connectors (The cooling fan speed control circuit is shorted to ground.)
			Cooling fan speed control solenoid valve
		- Casling for door not approximate property	Cooling fan pump
		 Cooling fan does not operate properly (Overheat). 	Cooling fan drive pump
P1217	Engine over temperature (Overheat)	Cooling fan system does not operate	Cooling fan
		gine over temperature properly (Overheat).	Radiator coolant temperature sensor
1217			Radiator hose
			Radiator
			Radiator cap
			Water pump
			Thermostat
			Drive belts
			For more information, refer to EC-517, "Main 12 Causes of Overheating".

CAUTION:

When a malfunction is indicated, be sure to replace the coolant following the procedure in the MA-12, "Changing Engine Coolant" . Also, replace the engine oil.

- 1. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-11, "Anti-Freeze Coolant Mixture Ratio".
- 2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

Use this procedure to check the overall function of the cooling fan, During this check, a DTC might not be confirmed.

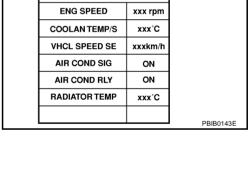

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(A) WITH CONSULT-II

- Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to EC-514. "Diagnostic Procedure"
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-514. "Diagnostic Procedure".
- 3. Start engine and make sure that the cooling fan operates. If not, go to EC-514, "Diagnostic Procedure".
- Select "TARGET FAN RPM" in "ACTIVE TEST" mode with CON-SULT-II.
- Change "TRGT FAN RPM" indication by touching "UP" and "DOWN", then make sure that the cooling fan operating speed changes according to "TRGT FAN RPM" indication.
- If the results are NG, go to EC-514, "Diagnostic Procedure".


WITHOUT CONSULT-II

- Check the coolant level in the reservoir tank and radiator. Allow engine to cool before checking coolant level. If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to EC-514. "Diagnostic Procedure"
- Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-514. "Diagnostic Procedure".
- 3. Start engine.

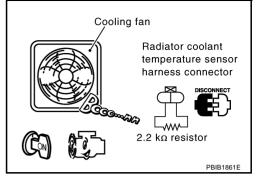
CAUTION:

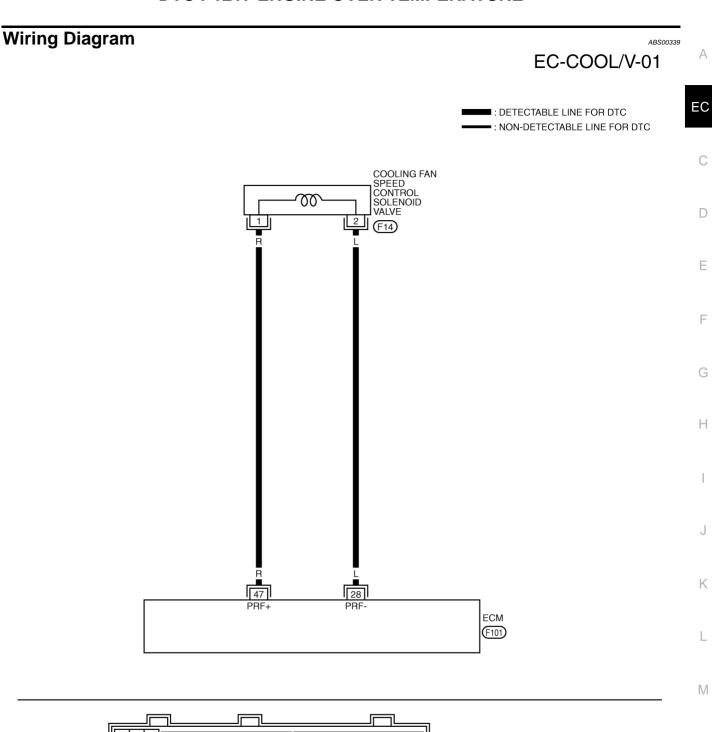
Be careful not to overheat engine.

- 4. Make sure that the cooling fan operates. If not, go to EC-514, "Diagnostic Procedure".
- Turn ignition switch OFF. 5.
- Disconnect radiator coolant temperature sensor harness connector.
- Connect $2.2k\Omega$ resistor to engine coolant temperature sensor harness connector.

EC

Α


Н


8. Restart engine and make sure that cooling fan operates at higher speed than the speed at step 4.


CAUTION:

Be careful not to overheat engine.

9. If NG, go to EC-514, "Diagnostic Procedure" .

TBWM0048E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
28	L	Cooling fan speed control solenoid valve ground	[Engine is running]	Approximately 0V
47	R	Cooling fan speed control solenoid valve	[Engine is running] ● Idle speed	6.5 - 8V★ → 10.0V/Div 2 ms/Div PBIB0049E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

.....

1. CHECK COOLING FAN OPERATION-I

Start engine and make sure that cooling fan operates.

OK or NG

OK (With CONSULT-II)>>GO TO 3.
OK (With CONSULT-II)>>GO TO 4.
NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Cooling fan fluid for leak
- Drive belts (Refer to <u>EM-13, "DRIVE BELTS"</u>)
- Cooling fan pump (Refer to <u>CO-7, "COOLING SYSTEM"</u>)
- Cooling fan drive pump (Refer to <u>CO-7</u>, "<u>COOLING SYSTEM</u>")

>> Repair or replace.

3. CHECK COOLING FAN OPERATION-II

(II) With CONSULT-II

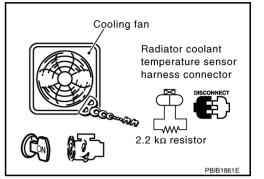
- Select "TARGET FAN RPM" in "ACTIVE TEST" mode with CON-SULT-II.
- 2. Change "TRGT FAN RPM" indication by touching "UP" and "DOWN", then make sure that the cooling fan operating speed changes according to "TRGT FAN RPM" indication.

OK or NG

OK >> GO TO 9. NG >> GO TO 5.

ACTIVE TES	T	
TARGET FAN RPM	800.0 rpm	
MONITOR		
ENG SPEED	xxx rpm	
COOLAN TEMP/S	xxx°C	
VHCL SPEED SE	xxxkm/h	
AIR COND SIG	ON	
AIR COND RLY	ON	
RADIATOR TEMP	xxx°C	
		PBIB014

ABS0033A

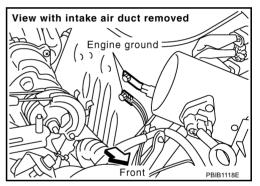

4. CHECK COOLING FAN OPERATION-II

W Without CONSULT-II

- Turn ignition switch OFF.
- Disconnect radiator coolant temperature sensor harness connector.
- Connect 2.2k Ω resistor to radiator coolant temperature sensor connector.
- 4. Start engine.
- Make sure that cooling fan operates at higher speed than the speed at test No. 1.

OK or NG

OK >> GO TO 9. NG >> GO TO 5.


5. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- Loosen and retighten two ground screws. Refer to EC-141, "Ground Inspection".

OK or NG

OK >> GO TO 6.

NG >> Repair or replace ground connections.

6. CHECK COOLING FAN SPEED CONTROL SOLENOID VALVE CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 28 and ground. Refer to Wiring Diagram.

Continuity should not exist.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK COOLING FAN SPEED CONTROL SOLENOID VALVE

Refer to EC-583, "Component Inspection"

OK or NG

OK >> GO TO 8.

NG >> Replace cooling fan speed control solenoid valve. EC

F

Н

M

8. DETECT MALFUNCTIONING PART

Check the following.

- Cooling fan fluid for leak
- Drive belts (Refer to <u>EM-13, "DRIVE BELTS"</u>)
- Cooling fan pump (Refer to <u>CO-7, "COOLING SYSTEM"</u>)
- Cooling fan drive pump (Refer to CO-7, "COOLING SYSTEM")

>> Repair or replace.

9. CHECK RADIATOR COOLANT TEMPERATURE SENSOR

Refer to EC-438, "Component Inspection".

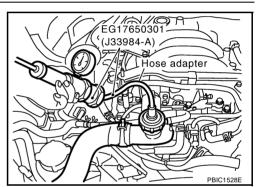
OK or NG

OK >> GO TO 10.

NG >> Replace radiator coolant temperature sensor.

10. CHECK COOLING SYSTEM FOR LEAK

Apply pressure to the cooling system with a tester, and check if the pressure drops.


Testing pressure: 157 kPa (1.6 kg/cm², 23 psi)

CAUTION:

Higher than the specified pressure may cause radiator damage. Pressure should not drop.

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

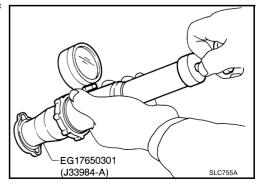
11. DETECT MALFUNCTIONING PART

Check the following for leak.

- Radiator
- Hose
- Water pump (Refer to <u>CO-22, "WATER PUMP"</u>)

>> Repair or replace.

12. CHECK RADIATOR CAP


Apply pressure to cap with a tester and check radiator cap relief pressure.

Radiator cap relief pressure:

OK or NG

OK >> GO TO 13.

NG >> Replace radiator cap.

13. CHECK THERMOSTAT

- 1. Remove thermostat.
- 2. Check valve seating condition at normal room temperatures. **It should seat tightly.**
- Check valve opening temperature and valve lift.

Valve opening temperature: 95°C (203°F) [standard]
Valve lift: More than 8.0 mm/108°C

(0.315 in/226°F)

4. Check if valve is closed at 5°C (9°F) below valve opening temperature. For details, refer to CO-24, "THERMOSTAT AND WATER CONTROL VALVE".

OK or NG

OK >> GO TO 14.

NG >> Replace thermostat.

14. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-197, "Component Inspection".

OK or NG

Engine

OK >> GO TO 15.

NG >> Replace engine coolant temperature sensor.

Inspection item

15. CHECK MAIN 12 CAUSES

Step

If the cause cannot be isolated, go to EC-517, "Main 12 Causes of Overheating" .

>> INSPECTION END

Main 12 Causes of Overheating

ABS0033B

Reference page

SI C343

Engine	Step	inspection item	Equipment	Statidatu	Reference page
OFF	1	 Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper 	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See MA-10, "RECOM- MENDED FLUIDS AND LUBRICANTS" ,
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See MA-12, "Changing Engine Coolant",
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/ cm ² , 9 - 14 psi) (Limit)	See <u>LU-4</u> , " <u>LUBRICA-</u> <u>TION SYSTEM"</u> .
ON* ²	5	Coolant leaks	Visual	No leaks	See <u>LU-4</u> , " <u>LUBRICA-</u> <u>TION SYSTEM"</u> .
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See CO-24, "THERMO- STAT AND WATER CON- TROL VALVE", and CO- 12, "RADIATOR".
ON*1	7	Cooling fan	CONSULT-II	Operating	See trouble diagnosis for DTC P1217 (EC-514).
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_

Equipment

Standard

EC

F

Н

ากรรค

_

M

Revision: 2004 October EC-517 2004 M45

Engine	Step	Inspection item	Equipment	Standard	Reference page
ON* ³	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driv- ing and idling	See MA-12, "Changing Engine Coolant" .
OFF* ⁴	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See <u>MA-12, "ENGINE</u> <u>MAINTENANCE"</u> .
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See <u>EM-65, "CYLINDER</u> <u>HEAD"</u> .
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See EM-80, "CYLINDER BLOCK" .

^{*1:} Turn the ignition switch ON.

For more information, refer to CO-5, "OVERHEATING CAUSE ANALYSIS" .

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (56 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

DTC P1220 FUEL PUMP CONTROL MODULE (FPCM)

PFP:17001

Description SYSTEM DESCRIPTION

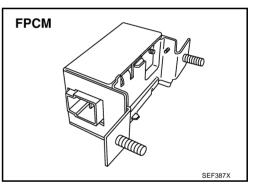
ABS002PR

Α

EC

D

F


Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		
Mass air flow sensor	Amount of intake air	Fuel pump control Fuel pump control modu (FPCM)	Fuel pump control module
Engine coolant temperature sensor	Engine coolant temperature		(i i Oivi)
Ignition switch	Start signal		

This system controls the fuel pump operation. The amount of fuel flow delivered from the fuel pump is altered between two flow rates by the FPCM operation. The FPCM determines the voltage supplied to the fuel pump (and therefore fuel flow) according to the following conditions.

Conditions	Amount of fuel flow	Supplied voltage
 Engine cranking Engine coolant temperature is below 10°C (50°F). Engine is running under heavy load and high speed conditions 	high	Battery voltage (11 - 14V)
Except the above	low	Approximately 8V

COMPONENT DESCRIPTION

The FPCM adjusts the voltage supplied to the fuel pump to control the amount of fuel flow. When the FPCM increases the voltage supplied to the fuel pump, the fuel flow is increased. When the FPCM decreases the voltage, the fuel flow is decreased.

CONSULT-II Reference Value in Data Monitor Mode

ABS002PS

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
FPCM	When cranking engine	н
I I OW	• Idle at coolant temperature: More than 10°C (50°F)	LOW

On Board Diagnosis Logic

ABS002PT

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1220 1220	Fuel pump control module (FPCM)	An improper voltage signal from the FPCM, which is supplied to a point between the fuel pump and the dropping resistor, is detected by ECM.	 Harness or connectors (FPCM circuit is shorted.) Dropping resistor FPCM

DTC Confirmation Procedure

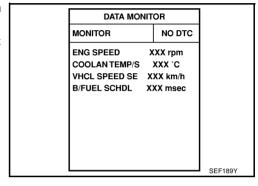
ABS002PV

CAUTION:

Always drive vehicle at a safe speed.

NOTE

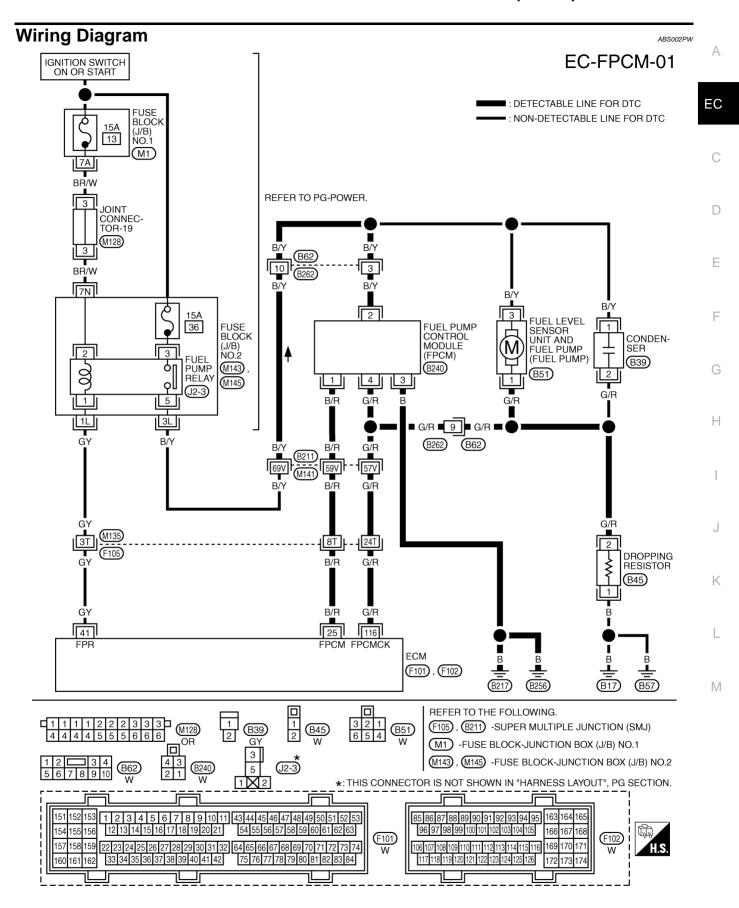
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V with ignition switch ON.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure that "COOLAN TEMP/S" indicates less than 70°C (158°F). If not, cool down the engine.
- 3. Start engine.
- 4. Hold vehicle at the following conditions for 12 seconds.


ENG SPEED	1,100 - 2,450 rpm
VHCL SPEED SE	More than 70 km/h (43 MPH)
B/FUEL SCHDL	1 - 10 msec
Selector lever	Suitable position

If 1st trip DTC is detected, go to <u>EC-522, "Diagnostic Procedure"</u>.

WITH GST

Follow the procedure WITH CONSULT-II above.

TBWA0306E

Specification data are reference values and are measured between each terminal and ground.

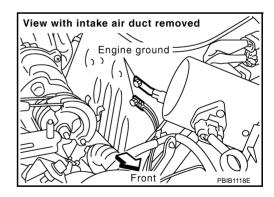
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[When cranking engine]	0 - 0.5V
25	B/R	Fuel pump control	[Engine is running]	
23	D/IX	module (FPCM)	Warm-up condition	8 - 12V
			Idle speed	
			[Ignition switch: ON]	
			For a few seconds after turning ignition switch ON	0 - 1.0V
41	GY	Fuel pump relay	[Engine is running]	8 - 12V
			[Ignition switch: ON]	
			 More than a few seconds after turning ignition switch ON. 	
			[Engine is running]	
			 More than a few seconds after turning ignition switch ON 	Approximately 0V
		Food access and and	[Ignition switch ON]	
116	G/R	Fuel pump control module (FPCM) check	For a few seconds after turning ignition switch ON	
			[Engine is running]	4 - 6V
			Warm-up condition	
			Idle speed	

Diagnostic Procedure

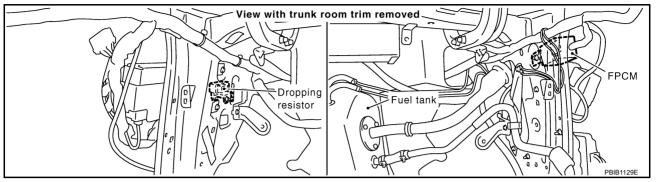
1. CHECK GROUND CONNECTIONS


1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws. Refer to EC-141, "Ground Inspection".

OK or NG

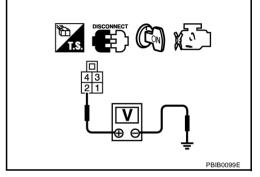
OK >> GO TO 2.


NG >> Repair or replace ground connections.

ABS002PX

$\overline{2}$. CHECK FPCM POWER SUPPLY CIRCUIT

1. Disconnect fuel pump control module (FPCM) harness connector.



- 2. Turn ignition switch ON.
- 3. Check voltage between FPCM terminal 2 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M141, B211
- Harness connectors B62, B262
- Harness for open or short between FPCM and harness connector B211

>> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FPCM GROUND CIRCUIT-I FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Check harness continuity between FPCM terminal 3 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to power in harness or connectors.

EC

С

D

.

G

Н

M

5. CHECK FPCM GROUND CIRCUIT-II FOR OPEN AND SHORT

- Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 2. Disconnect dropping resistor harness connector.
- Check harness continuity between the following;
 "fuel level sensor unit and fuel pump" terminal 1 and dropping resistor terminal 2,

FPCM terminal 4 and dropping resister terminal 2. Refer to Wiring Diagram.

Continuity should exist.

Check harness continuity between the following; FPCM terminal 4 and ground, "fuel level sensor and fuel pump" terminal 1 and ground. Refer to Wiring Diagram.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

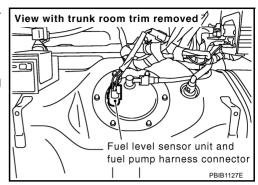
Check the following.

- Harness connectors B62, B262
- Harness for open or short between "fuel level sensor unit and fuel pump" and dropping resistor
- Harness for open or short between FPCM and dropping resistor
- Harness for open or short between "fuel level sensor unit and fuel pump" and ground
- Harness for open or short between FPCM and ground
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK FPCM INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 116 and FPCM terminal 4. Refer to Wiring Diagram.

Continuity should exist.


Check harness continuity between ECM terminal 116 and ground. Refer to Wiring Diagram.

Continuity should not exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F105, M135
- Harness connectors M141, B211
- Harness for open or short between ECM and FPCM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK FPCM OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 25 and FPCM terminal 1. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 11. NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F105, M135
- Harness connectors M141, B211
- Harness for open or short between ECM and FPCM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK FPCM

Refer to EC-525, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace FPCM.

12. CHECK INTERMITTENT INCIDENT

Refer to EC-132. "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

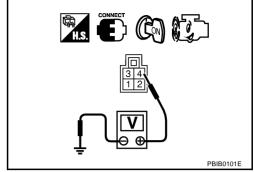
Component Inspection FUEL PUMP CONTROL MODULE

View with trunk room trim removed **FPCM** Dropping ⊳Fuel tank resistor

Start engine and warm it up to normal operating temperature.

EC

F


Н

ABS002PY

- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Check voltage between FPCM terminal 4 and ground under the following conditions.

Condition	Voltage
When engine cranking	Approx. 0V
After starting engine	Approx. 5V

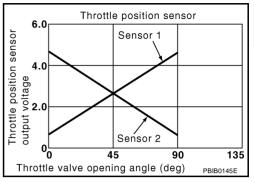
4. If NG, replace fuel pump control module.

DTC P1225 TP SENSOR

DTC P1225 TP SENSOR

PFP:16119

Component Description


ABS002PZ

Α

EC

Electric throttle control actuator consists of throttle control motor, acceleration pedal position sensor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition

On Board Diagnosis Logic

AB\$002Q0

F

M

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1225 1225	Closed throttle position learning performance problem	Closed throttle position learning value is excessively low.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

ABS002Q1

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(R) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- 5. If 1st trip DTC is detected, go to EC-528, "Diagnostic Procedure"

DATA M	DATA MONITOR	
MONITOR	NO DTC]
ENG SPEED	XXX rpm]
		SEF058Y

WITH GST

Follow the procedure WITH CONSULT-II above.

Revision: 2004 October **EC-527** 2004 M45

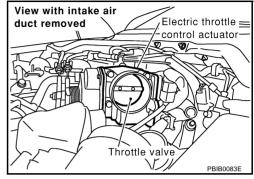
DTC P1225 TP SENSOR

Diagnostic Procedure

ABS002Q2

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

- 1. Turn ignition switch OFF.
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.


OK or NG

OK

>> GO TO 2.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

ABS002Q3

Refer to EM-18, "INTAKE MANIFOLD".

DTC P1226 TP SENSOR

DTC P1226 TP SENSOR

PFP:16119

Component Description

ABS002Q4

Α

EC

Electric throttle control actuator consists of throttle control motor, acceleration pedal position sensor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition

On Board Diagnosis Logic

ABS002Q5

F

Н

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1226 1226	Closed throttle position learning performance problem	Closed throttle position learning is not performed successfully, repeatedly.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

ABS002Q6

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(A) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- 5. Repeat steps 3 and 4 for 32 times.
- 6. If 1st trip DTC is detected, go to EC-530, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure WITH CONSULT-II above.

Revision: 2004 October **EC-529** 2004 M45

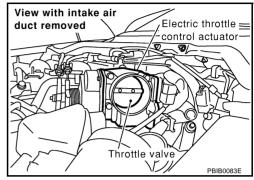
DTC P1226 TP SENSOR

Diagnostic Procedure

ABS002Q7

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

- 1. Turn ignition switch OFF.
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.


OK or NG

OK

>> GO TO 2.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning" .
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

ABS002Q8

Refer to EM-18, "INTAKE MANIFOLD".

DTC P1229 SENSOR POWER SUPPLY

DTC P1229 SENSOR POWER SUPPLY

On Board Diagnosis Logic

PFP:16119

ABS002Q9

Α

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	EC	
			Harness or connectors (The TP sensor 1 and 2 circuit is shorted.) (APP sensor 1 circuit is shorted.)	С	
			(MAF sensor circuit is shorted.) (EVAP control system pressure sensor circuit is shorted.)	D	
P1229		, , , ,	(Power steering pressure sensor circuit is shorted.) (Refrigerant pressure sensor circuit is shorted.)	Е	
1229			Electric throttle control actuator (TP sensor 1 and 2)	F	
			Accelerator pedal position sensor (APP sensor 1)		
				MAF sensor	G
				EVAP control system pressure sensor	
			Power steering pressures sensor		
			Refrigerant pressures sensor	Н	

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

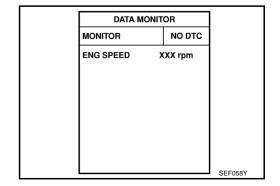
ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

ABS002QA

M

NOTE:

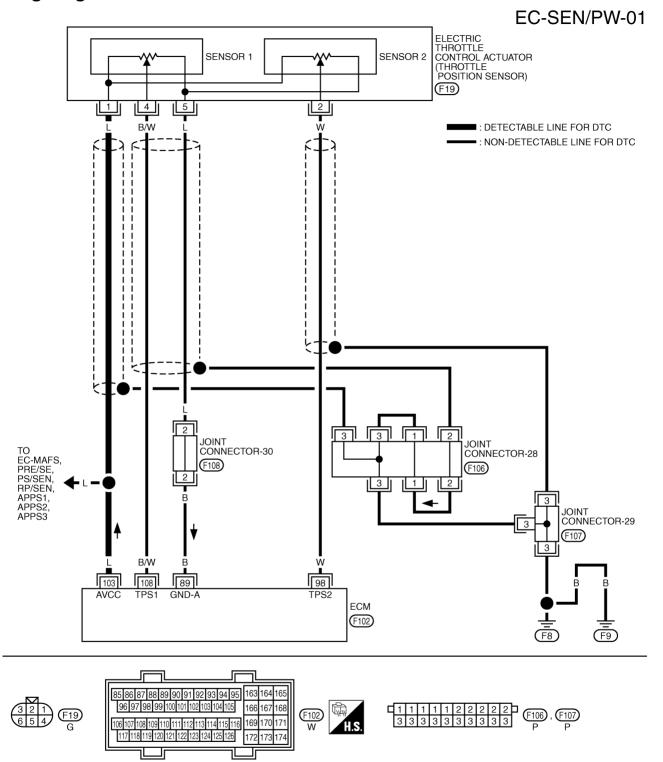

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

WITH CONSULT-II

- Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for 1 second.
- If DTC is detected, go to EC-533, "Diagnostic Procedure".



GI WITH GST

Follow the procedure WITH CONSULT-II above.

EC-531 Revision: 2004 October 2004 M45 Wiring Diagram

ABS002QB

TBWA0301E

1111111222222 F108 L

DTC P1229 SENSOR POWER SUPPLY

Specification data are reference values and are measured between each terminal and ground.

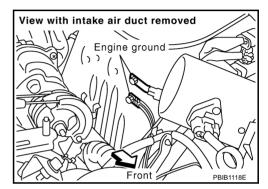
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V

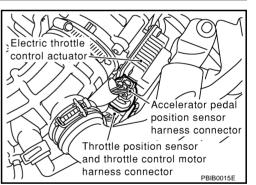
Diagnostic Procedure

ABS002QC


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

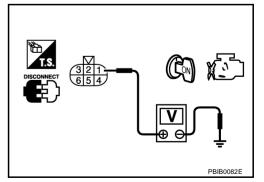
OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT

- Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.



 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 3.

EC

Α

F

D

G

Н

J

DTC P1229 SENSOR POWER SUPPLY

3. CHECK SENSOR POWER SUPPLY CIRCUITS

Check the following.

Harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminals	Reference Wiring Diagram
103	Electric throttle control actuator terminal 1	EC-532
	APP sensor terminal 7	EC-617
	MAF sensor terminal 2	EC-177
	EVAP control system pressure sensor terminal 1	EC-357
	Power steering pressure sensor terminal 1	EC-406
	Refrigerant pressure sensor terminal 1	EC-681

OK or NG

OK >> GO TO 4.

NG >> Repair short to ground or short to power in harness or connectors.

4. CHECK COMPONENTS

Check the following.

- Accelerator pedal position sensor (Refer to EC-620, "Component Inspection" .)
- Mass air flow sensor (Refer to <u>EC-188, "Component Inspection"</u>.)
- EVAP control system pressure sensor (Refer to <u>EC-361, "Component Inspection"</u>.)
- Power steering pressure sensor (Refer to <u>EC-409</u>, "Component Inspection" .)
- Refrigerant pressure sensor (Refer to <u>ATC-86, "COMPONENT INSPECTION"</u>)

OK or NG

OK >> GO TO 7.

NG >> Replace malfunctioning component.

5. CHECK THROTTLE POSITION SENSOR

Refer to EC-297, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- Replace electric throttle control actuator.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

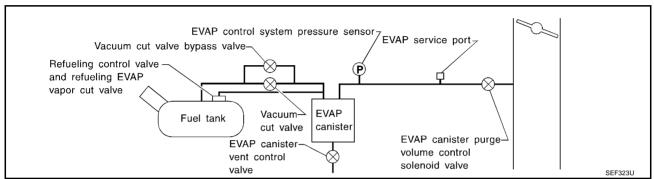
7. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P1442 EVAP CONTROL SYSTEM

PFP:14950


On Board Diagnosis Logic

ABS002VJ

NOTE:

If DTC P0442 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-558.) This diagnosis detects leaks in the EVAP purge line using vapor pressure in the fuel tank.

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank. If pressure increases, the ECM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
		Incorrect fuel tank vacuum relief valve		
			Incorrect fuel filler cap used	
			Fuel filler cap remains open or fails to close.	
			 Foreign matter caught in fuel filler cap. 	
			 Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. 	
			 Foreign matter caught in EVAP canister vent control valve. 	
			EVAP canister or fuel tank leaks	
			EVAP purge line (pipe and rubber tube) leaks	
			EVAP purge line rubber tube bent	
1442	small leak detected	mall leak detected control system does not operate prop-	Blocked or bent rubber tube to EVAP control sys- tem pressure sensor	
442	(positive pressure)		Loose or disconnected rubber tube	
			EVAP canister vent control valve and the circuit	
		EVAP canister purge volume control solenoid valve and the circuit		
		Fuel tank temperature sensor		
			O-ring of EVAP canister vent control valve is missing or damaged	
		Water separator		
		EVAP canister is saturated with water		
		EVAP control system pressure sensor		
			Fuel level sensor and the circuit	
			Refueling control valve	
		ORVR system leaks		

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.

EC-535 Revision: 2004 October 2004 M45

EC

Α

D

Use only a genuine NISSAN rubber tube as a replacement.

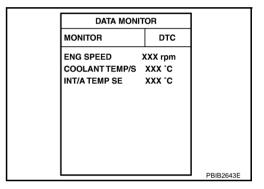
DTC Confirmation Procedure

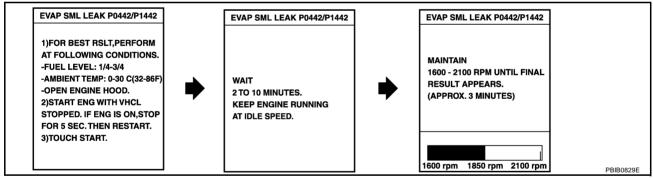
ABS002VK

NOTE:

- If DTC P0442 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See <u>EC-558</u>.)
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

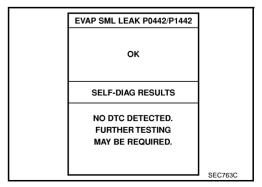

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).


(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)

 Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.


NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to EC-81, "Basic Inspection".

Make sure that "OK" is displayed.
 If "NG" is displayed, refer to <u>EC-537, "Diagnostic Procedure"</u>.

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

WITH GST

NOTE

Be sure to read the explanation of <u>EC-60</u>, "<u>Driving Pattern</u>" before driving vehicle.

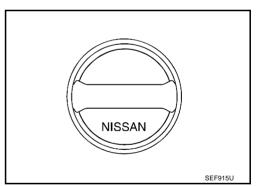
- 1. Start engine.
- 2. Drive vehicle according to EC-60, "Driving Pattern".
- 3. Stop vehicle.
- 4. Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine.

It is not necessary to cool engine down before driving.

- 7. Drive vehicle again according to the EC-60, "Driving Pattern".
- Stop vehicle.
- 9. Select "MODE 3" with GST.
- If P1442 is displayed on the screen, go to <u>EC-537</u>, "<u>Diagnostic Procedure</u>".
- If P0441 is displayed on the screen, go to EC-329, "Diagnostic Procedure".
- If P0442 is displayed on the screen, go to <u>EC-335</u>, "<u>Diagnostic Procedure</u>".
- If P0441, P0442 and P1442 are not displayed on the screen, go to the following step.
- 10. Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 6.

Diagnostic Procedure

1. CHECK FUEL FILLER CAP DESIGN


1. Turn ignition switch OFF.

2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

NG

OK >> GO TO 3.

>> • Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

• Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

EC

Α

F

F

C

ABS002VI

Н

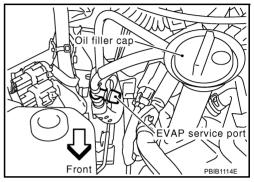
IV

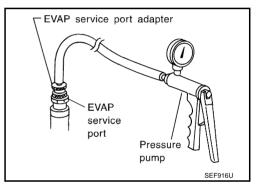
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-695, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)".

OK or NG

OK >> GO TO 5.


NG >> Replace fuel filler cap with a genuine one.

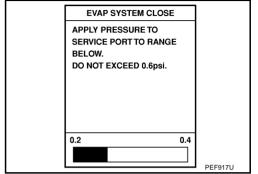

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely. For the location of EVAP service port, refer to EC-693, "EVAPORATIVE EMISSION LINE <a href="DRAWING".

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-II>>GO TO 6. Without CONSULT-II>>GO TO 7.

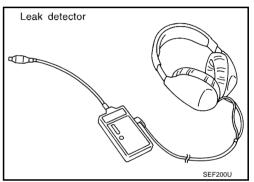

6. CHECK FOR EVAP LEAK

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.


4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details.

Refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING"

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

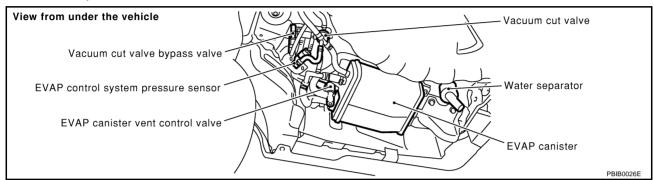
EC

D

F

G

Н


11

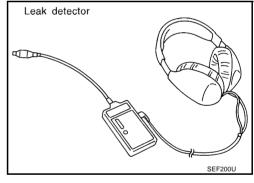
L

7. CHECK FOR EVAP LEAK

(R) Without CONSULT-II

- Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 5. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK WATER SEPARATOR

Refer to EC-543, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace water separator.

9. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

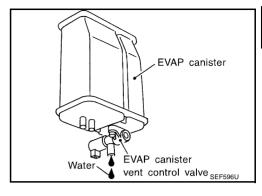
Refer to EC-558, "DTC Confirmation Procedure".

OK or NG

OK >> GO TO 10.

NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

10. CHECK IF EVAP CANISTER SATURATED WITH WATER


- Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Does water drain from the EVAP canister?

Yes or No

>> GO TO 11. Yes

No (With CONSULT-II)>>GO TO 13.

No (Without CONSULT-II)>>GO TO 14.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 13.

OK (Without CONSULT-II)>>GO TO 14.

>> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

>> Repair hose or replace EVAP canister.

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

>> GO TO 16. OK NG >> GO TO 15.

ACTIVE IES	' 1	
PURG VOL CONT/V	0 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
		PBIB014

ACTIVE TEST

EC

Н

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 17. NG >> GO TO 15.

15. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-24, "Vacuum Hose Drawing" .

OK or NG

OK >> GO TO 16.

NG >> Repair or reconnect the hose.

16. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-550, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace EVAP canister purge volume control solenoid valve.

17. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-291, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace fuel level sensor unit.

18. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-369, "Component Inspection".

OK or NG

OK >> GO TO 19.

NG >> Replace EVAP control system pressure sensor.

19. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to <u>EC-693</u>, "<u>EVAPORATIVE EMISSION LINE DRAWING</u>".

OK or NG

OK >> GO TO 20.

NG >> Repair or reconnect the hose.

20. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 21.

$\overline{21}$. check refueling evap vapor line

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-698, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)"

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses and tubes.

22. CHECK SIGNAL LINE AND RECIRCULATION LINE

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 23.

NG >> Repair or replace hoses, tubes or filler neck tube.

23. CHECK REFUELING CONTROL VALVE

Refer to EC-701, "Component Inspection".

OK or NG

OK >> GO TO 24.

NG >> Replace refueling control valve with fuel tank.

24. CHECK FUEL LEVEL SENSOR

Refer to DI-19. "CHECK FUEL LEVEL SENSOR UNIT".

OK or NG

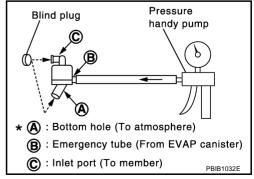
OK >> GO TO 25.

NG >> Replace fuel level sensor unit.

25. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection WATER SEPARATOR

1. Check visually for insect nests in the water separator air inlet.

- Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- Check that **A** and **C** are not clogged by blowing air into **B** with A, and then C plugged.
- In case of NG in items 2 4, replace the parts.

NOTE:

• Do not disassemble water separator.

EC

Α

F

Н

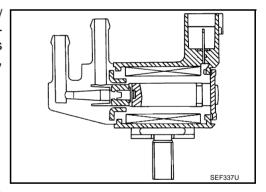
ABS002VM

DTC P1444 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

PFP:14920

Description SYSTEM DESCRIPTION

ABS002QD


Sensor	Input Signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Ignition switch	Start signal	EVAP canister	EVAP canister purge volume control solenoid valve	
Throttle position sensor	Throttle position	purge flow control		
Accelerator pedal position switch	Accelerator pedal position			
Heated oxygen sensor 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			
Fuel tank temperature sensor	Fuel temperature in fuel tank			
Wheel sensor*	Vehicle speed	7		

^{*:} This signal is sent to the ECM through CAN communication.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

ABS002QE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0%
PURG VOL C/V	Selector lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	_

On Board Diagnosis Logic

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P1444 1444	EVAP canister purge volume control solenoid valve	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	 EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Water separator Hoses (Hoses are connected incorrectly or clogged.) 	E

DTC Confirmation Procedure

ABS002QG

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 4. Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5. Touch "START".

PURG VOL CN/V	P1444		PURG VOL CN/V	P1444		PURG VOL CN/V P1444
OUT OF CONDI	TION		TESTING			
MONITOR		•	MONITOR		•	COMPLETED
ENG SPEED	XXX rpm	•	ENG SPEED	XXX rpm		
B/FUEL SCHDL	XXX msec		B/FUEL SCHDL	XXX msec		
COOLAN TEMP/S	xxx .c		COOLAN TEMP/S	xxx °c		
VHCL SPEED SE	XXX km/h		VHCL SPEED SE	XXX km/h		

Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take approximately 10 seconds.)

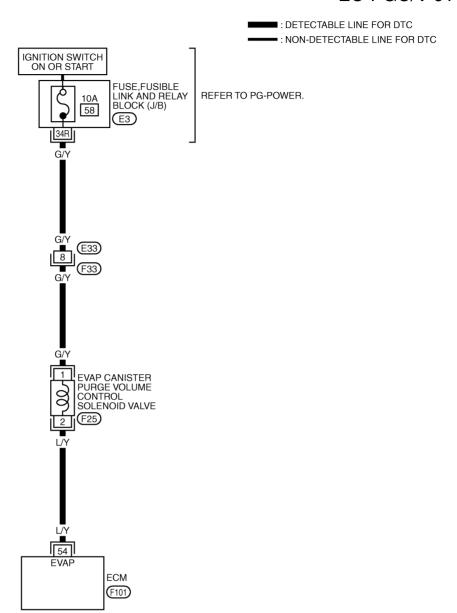
If "TESTING" is not displayed after 5 minutes, retry from step 2.

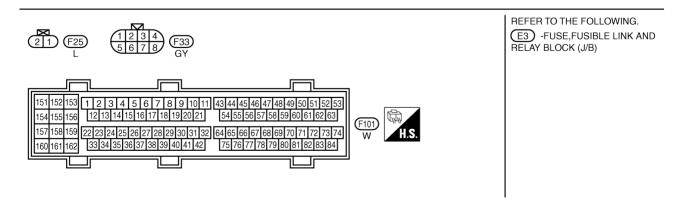
7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-547, "Diagnostic Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 20 seconds.
- Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to EC-547, "Diagnostic Procedure".

EC-545 Revision: 2004 October 2004 M45


D


F

Н

Wiring Diagram

EC-PGC/V-01

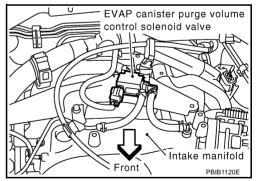
TBWA0290E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)* Discrete State of the state
54	L/Y	EVAP canister purge volume control solenoid valve	 [Engine is running] ● Engine speed is about 2,000 rpm (More than 100 seconds after starting engine). 	BATTERY VOLTAGE (11 - 14V)* Description of the property of th

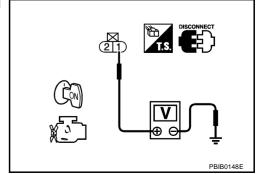

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

ABS002QI

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-CUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister purge volume control solenoid valve harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

Revision: 2004 October **EC-547** 2004 M45

EC

Α

D

_

F

Н

Κ

L

$\overline{2}$. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E33, F33
- Fuse, fusible link and relay block (J/B) connector E3
- 10A fuse
- Harness for open or short between EVAP canister purge volume control solenoid valve and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OUTPUT SIGNAL CIR-CUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 54 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Replace EVAP control system pressure sensor.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-361, "Component Inspection".

OK or NG

OK (With CONSULT-II)>>GO TO 6.

OK (Without CONSULT-II)>>GO TO 7.

NG >> Replace EVAP control system pressure sensor.

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- Turn ignition switch OFF.
- 2. Reconnect harness connectors disconnected.
- Start engine.
- 4. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

		1
ACTIVE TES	T	
PURG VOL CONT/V	0 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
	L	PBIB0147

7. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-550, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

8. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 9.

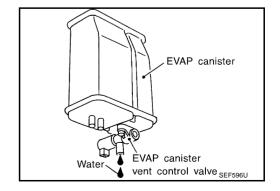
NG >> Clean the rubber tube using an air blower.

9. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-557, "Component Inspection".

OK or NG

OK >> GO TO 10.


NG >> Replace EVAP canister vent control valve.

10. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 11. No >> GO TO 14.

EC

 D

F

Н

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK >> GO TO 13. NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

13. CHECK WATER SEPARATOR

Refer to EC-543, "Component Inspection".

OK or NG

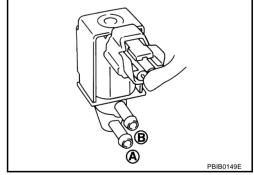
OK >> GO TO 14.

NG >> Clean or replace water separator.

14. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

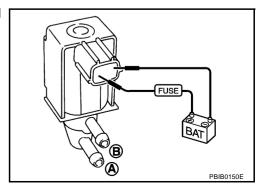
>> INSPECTION END


Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

ABS002QJ

With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B
100%	Yes
0%	No

⊗ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Removal and Installation EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EM-18, "INTAKE MANIFOLD".

ABS002QK

Α

EC

D

С

Е

F

G

Н

J

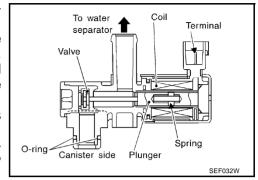
Κ

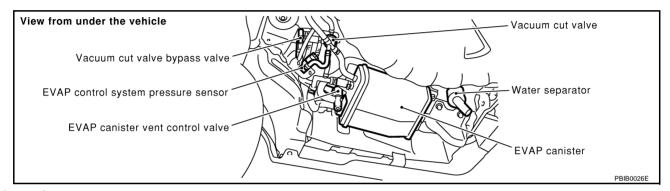
.

DTC P1446 EVAP CANISTER VENT CONTROL VALVE

PFP:14935

Component Description


ABS002QL


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows EVAP Control System diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

ABS002QM

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

ABS002QN

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
	EVAP canister vent control valve close			EVAP canister vent control valve
D4440				EVAP control system pressure sensor and the circuit
P1446 1446				
			Water separator	
			EVAP canister is saturated with water	

DTC Confirmation Procedure

ABS002QO

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(I) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine.
- 4. Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.

NOTE:

If a malfunction exists, NG result may be displayed quicker.

5. If 1st trip DTC is detected, go to EC-555, "Diagnostic Procedure"

DATA MOI	DATA MONITOR		
MONITOR		NO DTC	
ENG SPEED COOLAN TEMP/S VHCL SPEED SE)		
			PBIB1917E

WITH GST

Follow the procedure WITH CONSULT-II above.

EC

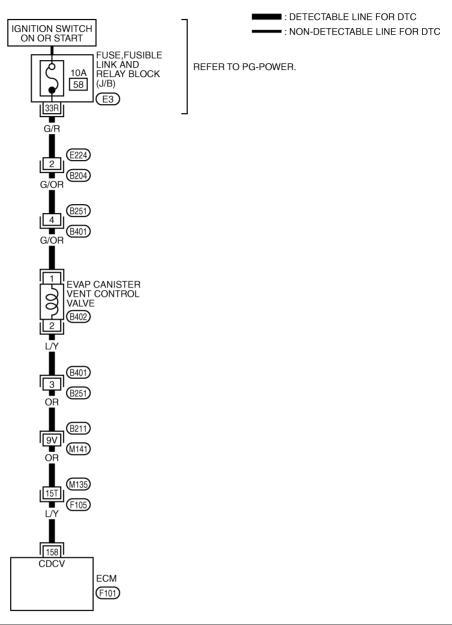
Α

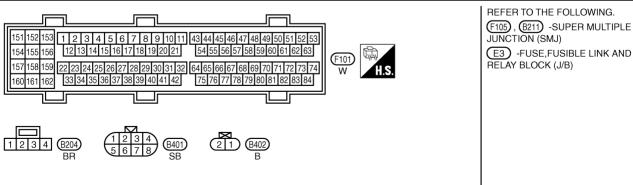
D

С

Е

G


Н


K

Wiring Diagram

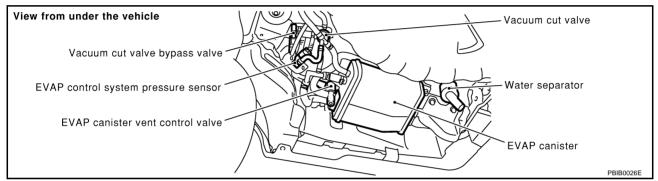
ABS002QP

EC-VENT/V-01

TBWA0291E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
158	L/Y	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

1. CHECK RUBBER TUBE

- 1. Turn ignition switch OFF.
- 2. Disconnect rubber tube connected to EVAP canister vent control valve.

3. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

NG >> Clean rubber tube using an air blower.

2. CHECK WATER SEPARATOR

Refer to EC-341, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Clean or replace water separator.

3. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-557, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace EVAP canister vent control valve.

EC

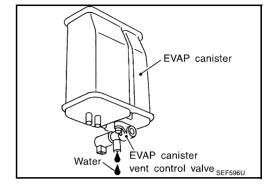
Α

ABS002QQ

Е

Н

K


V

4. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 5. No >> GO TO 7.

5. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP control system pressure sensor.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-369, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

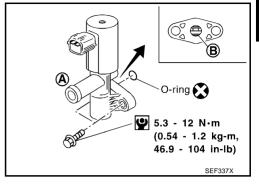
9. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CANISTER VENT CONTROL VALVE

Α


EC

(A) With CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for being rusted.

If NG, replace EVAP canister vent control valve. If OK, go to next step.

- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.

ACTIVE TEST

MONITOR **ENG SPEED**

OFF

XXX rpm

XXX %

XXX %

XXX V

xxx v

PBIB0153E

Н

M

VENT CONTROL/V

A/F AI PHA-R1

A/F ALPHA-B2

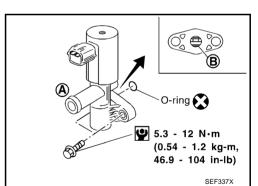
HO2S1 (B1)

HO2S1 (B2)

- Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- Check air passage continuity and operation delay time. Make sure new O-ring is installed properly.

Condition VENT CONTROL/V	Air passage continuity between A and B	
ON	No	
OFF	Yes	

Operation takes less than 1 second.


If NG, replace EVAP canister vent control valve.

If OK, go to next step.

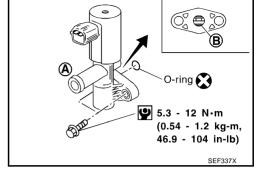
- 7. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 8. Perform step 5 again.

⋈ Without CONSULT-II

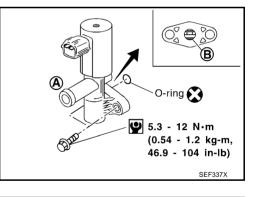
- Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion **B** of EVAP canister vent control valve for being rusted.

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.


Condition	Air passage continuity between A and B	
12V direct current supply between terminals 1 and 2	No	
OFF	Yes	

Operation takes less than 1 second.


If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 5. Perform step 3 again.

O-ring 💽

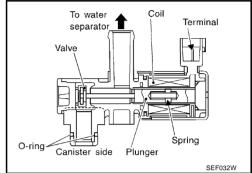
DTC P1448 EVAP CANISTER VENT CONTROL VALVE

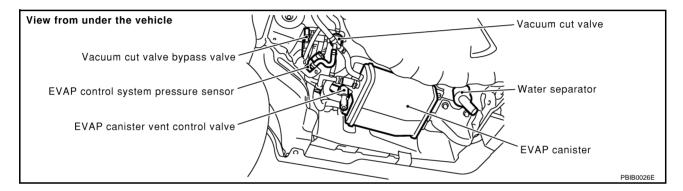
PFP:14935

Component Description

ABS002QS

NOTE:


If DTC P1448 is displayed with P0442, P0455, P0456, P1442 or P1456, perform trouble diagnosis for DTC P1448 first.


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows EVAP Control System (Small Leak) diagnosis.

CONSULT-II Reference Value in Data Monitor Mode

ABS002QT

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

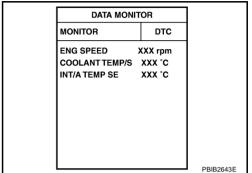
ABS002QU

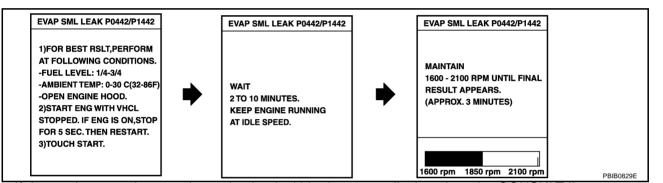
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			EVAP canister vent control valve
			EVAP control system pressure sensor and the circuit
P1448 1448	EVAP canister vent control valve open	EVAP canister vent control valve remains open under specified driving conditions.	Blocked rubber tube to EVAP canister vent control valve
			Water separator
			EVAP canister is saturated with water
			Vacuum cut valve

DTC Confirmation Procedure

ABS002QW

NOTE:


- If DTC P1448 is displayed with P0442, P0455, P0456, P1442 or P1456, first perform trouble diagnosis for DTC P1448.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(II) WITH CONSULT-II TESTING CONDITION:

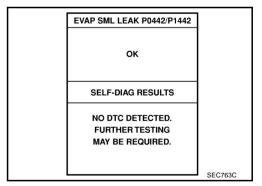
- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).
- 1. Turn ignition switch ON.
- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4. Make sure that the following conditions are met.

COOLAN TEMP/S	0 - 70°C (32 - 158°F)
INT/A TEMP SE	0 - 30°C (32 - 86°F)

5. Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II. Follow the instruction displayed.

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to EC-81, "Basic Inspection".

Make sure that "OK" is displayed.If "NG" is displayed, go to the following step.


NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

- 7. Stop engine and wait at least 10 seconds, then turn ON.
- 8. Disconnect hose from water separator.
- Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.
- 10. Touch "ON" and "OFF" alternately.
- 11. Make sure the following.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

If the result is NG, go to $\underline{\text{EC-562}}$, "Diagnostic Procedure" . If the result is OK, go to "Diagnostic Procedure" for DTC P0442, $\underline{\text{EC-335}}$.

CONNECT O-ring	ACTIVE TES	т
	VENT CONTROL/V	OFF
	MONITOR	
	ENG SPEED	XXX rpm
	A/F ALPHA-B1	XXX %
	A/F ALPHA-B2	XXX %
	HO2S1 (B1)	xxx v
	HO2S1 (B2)	xxx v
B		PBIB0153E

Overall Function Check

ABS002QX

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a 1st trip DTC might not be confirmed.

Revision: 2004 October **EC-559** 2004 M45

EC

Α

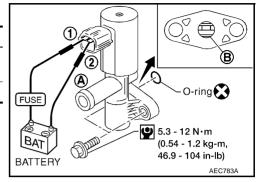
Е

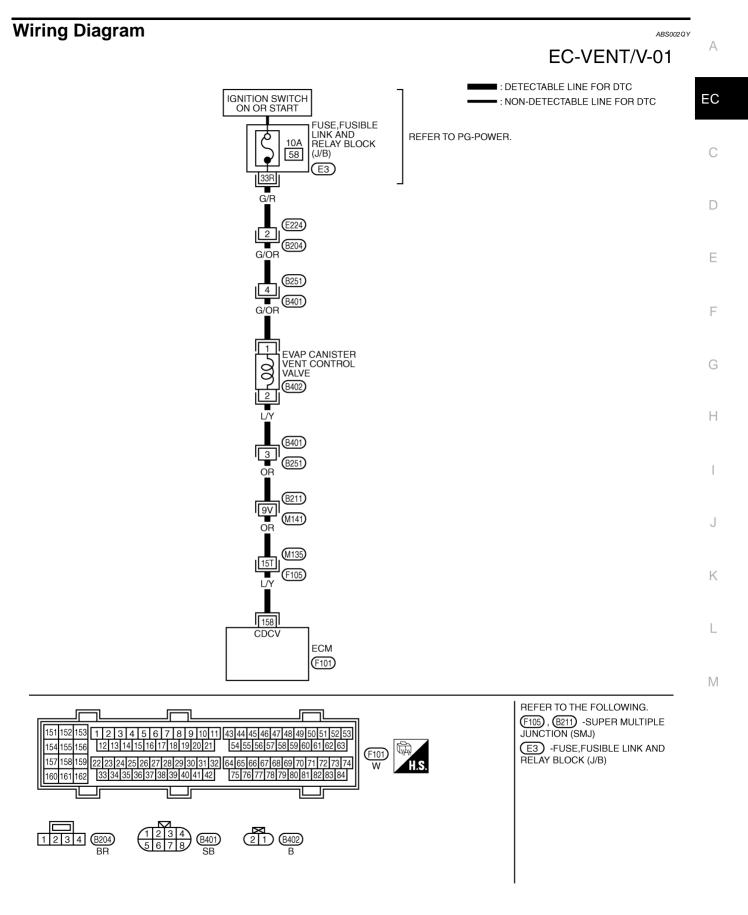
Н

.1

K

.


. .


WITH GST

- 1. Disconnect hose from water separator.
- 2. Disconnect EVAP canister vent control valve harness connector.
- 3. Verify the following.

Condition	Air passage continuity
12V direct current supply between terminals 1 and 2	No
No supply	Yes

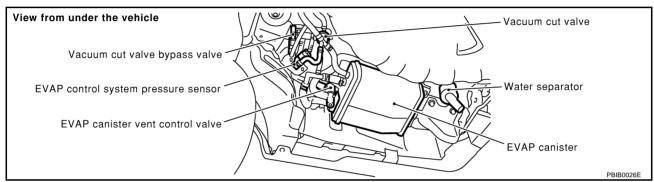
If the result is NG, go to $\underline{\text{EC-562}}$, "Diagnostic Procedure" . If the result is OK, go to "Diagnostic Procedure" for DTC P0442, $\underline{\text{EC-335}}$.

TBWA0291E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
158	L/Y	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

ABS002QZ

1. CHECK RUBBER TUBE

- 1. Turn ignition switch OFF.
- 2. Disconnect rubber tube connected to EVAP canister vent control valve.

3. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

NG >> Clean rubber tube using an air blower.

2. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-564, "Component Inspection".

OK or NG

OK >> GO TO 3.

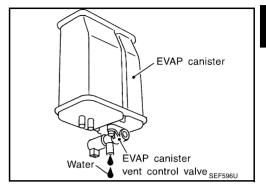
NG >> Replace EVAP canister vent control valve.

3. CHECK VACUUM CUT VALVE

Refer to EC-598, "Component Inspection".

OK or NG

OK >> GO TO 4.


NG >> Replace vacuum cut valve.

4. CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Check if water will drain from the EVAP canister.

Yes or No

Yes >> GO TO 5. >> GO TO 7. No

5. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE

Check disconnection or improper connection of hose connected to EVAP control system pressure sensor.

OK or NG

>> GO TO 8. OK NG >> Repair it.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP control system pressure sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

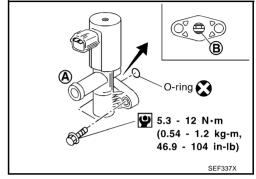
Refer to EC-369, "Component Inspection".

OK or NG

OK >> GO TO 10.

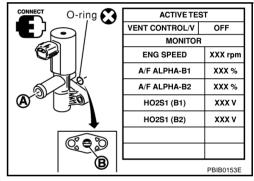
NG >> Replace EVAP control system pressure sensor. EC

10. CHECK INTERMITTENT INCIDENT

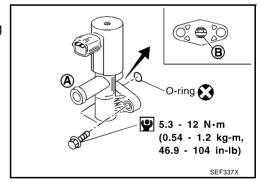

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CANISTER VENT CONTROL VALVE

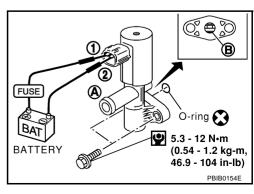

(P)With CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion B of EVAP canister vent control valve for being rusted.
- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.
- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.


ABS002R0

- 6. Check air passage continuity and operation delay time.
- 7. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- 8. Perform Test No. 9 again.

With GST


- 1. Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for being rusted.

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.

- 4. Clean the air passage (Portion **A** to **B**) of EVAP canister vent control valve using an air blower.
- 5. Perform Test No. 9 again.

DTC P1456 EVAP CONTROL SYSTEM

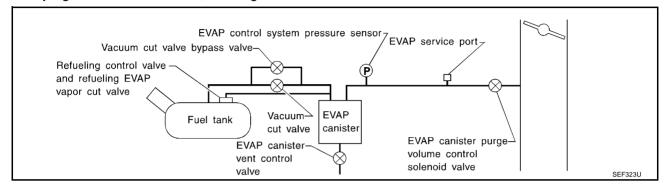
PFP:14710

On Board Diagnosis Logic

ABS002VN

Α

EC


 D

This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using vapor pressure in the fuel tank in the same way as conventional EVAP small leak diagnosis.

If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected.

If ECM judges a leak equivalent to a small leak, EVAP small leak P1442 will be detected.

If ECM judges there are no leaks, the diagnosis will be OK.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			Incorrect fuel tank vacuum relief valve
			Incorrect fuel filler cap used
			Fuel filler cap remains open or fails to close.
			Foreign matter caught in fuel filler cap.
			Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
			Foreign matter caught in EVAP canister vent control valve.
		 EVAP system has a very small leak. EVAP system does not operate properly. 	EVAP canister or fuel tank leaks
			EVAP purge line (pipe and rubber tube) leaks
			EVAP purge line rubber tube bent
	Evaporative emission control system very small leak (negative pressure check)		Blocked or bent rubber tube to EVAP control sys- tem pressure sensor
			Loose or disconnected rubber tube
P0456 0456			EVAP canister vent control valve and the circuit
0430			EVAP canister purge volume control solenoid valve and the circuit
			Absolute pressure sensor
			Fuel tank temperature sensor
			O-ring of EVAP canister vent control valve is missing or damaged
			Water separator
			EVAP canister is saturated with water
			EVAP control system pressure sensor
			Refueling control valve
			ORVR system leaks
			Fuel level sensor and the circuit
			Foreign matter caught in EVAP canister purge vol- ume control solenoid valve

CAUTION:

 Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

Revision: 2004 October **EC-565** 2004 M45

- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

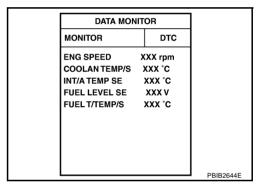
ABS002VO

NOTE:

- If DTC P1456 is displayed with P1442, perform TROUBLE DIAGNOSIS FOR DTC P1456 first.
- After repair, make sure that the hoses and clips are installed properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

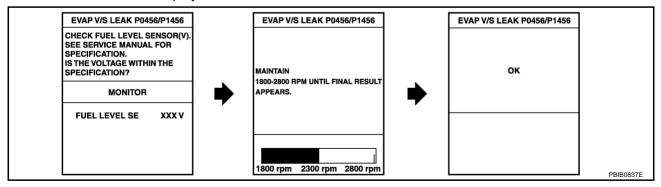
TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Refilled or drained the fuel.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.


(P) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure the following conditions are met.

FUEL LEVEL SE: 0.25 - 1.15V


COOLAN TEMP/S: 0 - 32°C (32 - 90°F) FUEL T/TMP SE: 0 - 35°C (32 - 95°F) INT/A TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- Select "EVAP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

Make sure that "OK" is displayed.
 If "NG" is displayed, refer to <u>EC-568</u>, "Diagnostic Procedure".

NOTE:

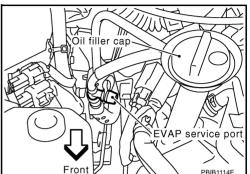
- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to <u>EC-81</u>, "Basic Inspection".
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

Overall Function Check

WITH GST

Α

EC


F

Н

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

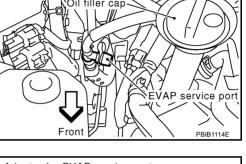
CAUTION:

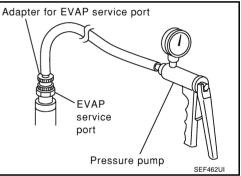
- Never use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm² , 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP service port.

- Set the pressure pump and a hose.
- 3. Also set a vacuum gauge via 3-way connector and a hose.
- 4 Turn ignition switch ON.
- Connect GST and select MODE 8. 5.
- Using MODE 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).
- Apply pressure and make sure the following conditions are satisfied

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and

the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg).


If NG, go to EC-568, "Diagnostic Procedure".

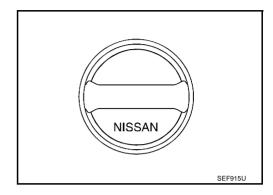

If OK, go to next step.

- Disconnect GST.
- 9. Start engine and warm it up to normal operating temperature.
- 10. Turn ignition switch OFF and wait at least 10 seconds.
- 11. Restart engine and let it idle for 90 seconds.
- 12. Keep engine speed at 2,000 rpm for 30 seconds.
- 13. Turn ignition switch OFF.

NOTE:

For more information, refer to GST Instruction Manual.

Diagnostic Procedure


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

ABS002VQ

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> • Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

• Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

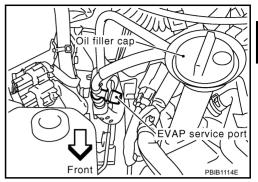
OK >> GO TO 5. NG >> GO TO 4.

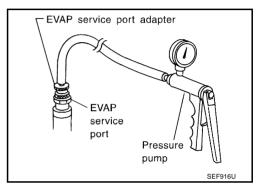
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-695, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)".

OK or NG

OK >> GO TO 5.


NG >> Replace fuel filler cap with a genuine one.

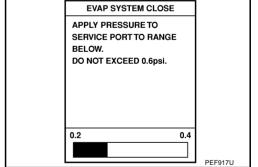

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely. For the location of EVAP service port, refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING".

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-II>>GO TO 6. Without CONSULT-II>>GO TO 7.

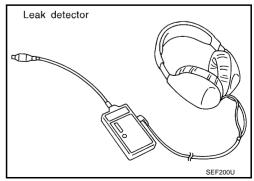

6. CHECK FOR EVAP LEAK

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II. 2.
- Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.

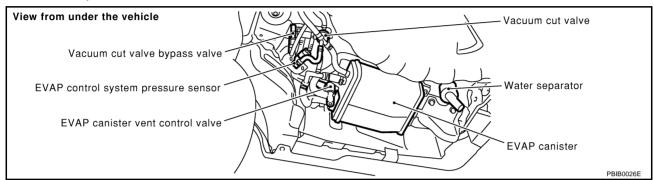


4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-693, "EVAPORATIVE EMISSION LINE DRAWING"

OK or NG

>> GO TO 8. OK

NG >> Repair or replace.


EC

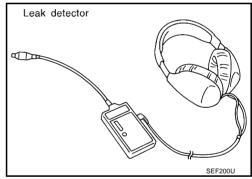
Α

7. CHECK FOR EVAP LEAK

(R) Without CONSULT-II

- Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 3. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12V until the end of test.)

4. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to <u>EC-693</u>, "<u>EVAPORATIVE EMISSION LINE DRAWING</u>".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK WATER SEPARATOR

Refer to EC-573, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace water separator.

9. CHECK EVAP CANISTER VENT CONTROL VALVE, O-RING AND CIRCUIT

Refer to EC-558, "DTC Confirmation Procedure".

OK or NG

OK >> GO TO 10.

NG >> Repair or replace EVAP canister vent control valve and O-ring or harness/connector.

10. CHECK IF EVAP CANISTER SATURATED WITH WATER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 11.

No (With CONSULT-II)>>GO TO 13.

No (Without CONSULT-II)>>GO TO 14.

11. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve attached.

The weight should be less than 1.8 kg (4.0 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 13.

OK (Without CONSULT-II)>>GO TO 14.

NG >> GO TO 12.

12. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and water separator for clogging or poor connection

>> Repair hose or replace EVAP canister.

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

ACTIVE IES	, ,	
PURG VOL CONT/V	0 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
L		PBIB0147E

ACTIVE TEST

EC

С

F

Н

ı

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 17. NG >> GO TO 15.

15. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-24, "Vacuum Hose Drawing" .

OK or NG

OK >> GO TO 16.

NG >> Repair or reconnect the hose.

16. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-550, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace EVAP canister purge volume control solenoid valve.

17. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-291, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace fuel level sensor unit.

18. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-369, "Component Inspection".

OK or NG

OK >> GO TO 19.

NG >> Replace EVAP control system pressure sensor.

19. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to <u>EC-693</u>, "<u>EVAPORATIVE EMISSION LINE DRAWING</u>".

OK or NG

OK >> GO TO 20.

NG >> Repair or reconnect the hose.

20. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 21.

$\overline{21}$. check refueling evap vapor line

Check refueling EVAP vapor line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-698, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)"

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hoses and tubes.

22. CHECK SIGNAL LINE AND RECIRCULATION LINE

Check signal line and recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 23.

NG >> Repair or replace hoses, tubes or filler neck tube.

23. CHECK REFUELING CONTROL VALVE

Refer to EC-701, "Component Inspection".

OK or NG

OK >> GO TO 24.

NG >> Replace refueling control valve with fuel tank.

24. CHECK FUEL LEVEL SENSOR

Refer to DI-19. "CHECK FUEL LEVEL SENSOR UNIT".

OK or NG

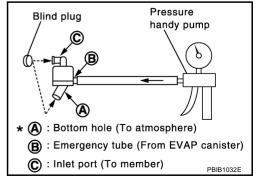
OK >> GO TO 25.

NG >> Replace fuel level sensor unit.

25. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection WATER SEPARATOR

1. Check visually for insect nests in the water separator air inlet.

- Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- Check that **A** and **C** are not clogged by blowing air into **B** with A, and then C plugged.
- In case of NG in items 2 4, replace the parts.

NOTE:

• Do not disassemble water separator.

EC

Α

F

Н

ABS002VR

DTC P1464 FUEL LEVEL SENSOR

DTC P1464 FUEL LEVEL SENSOR

PFP:25060

Component Description

ABS002R1

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

ABS002R2

ECM receives two signals from the fuel level sensor.

One is fuel level sensor power supply circuit, and the other is fuel level sensor ground circuit. This diagnosis indicates the latter to detect open circuit malfunction.

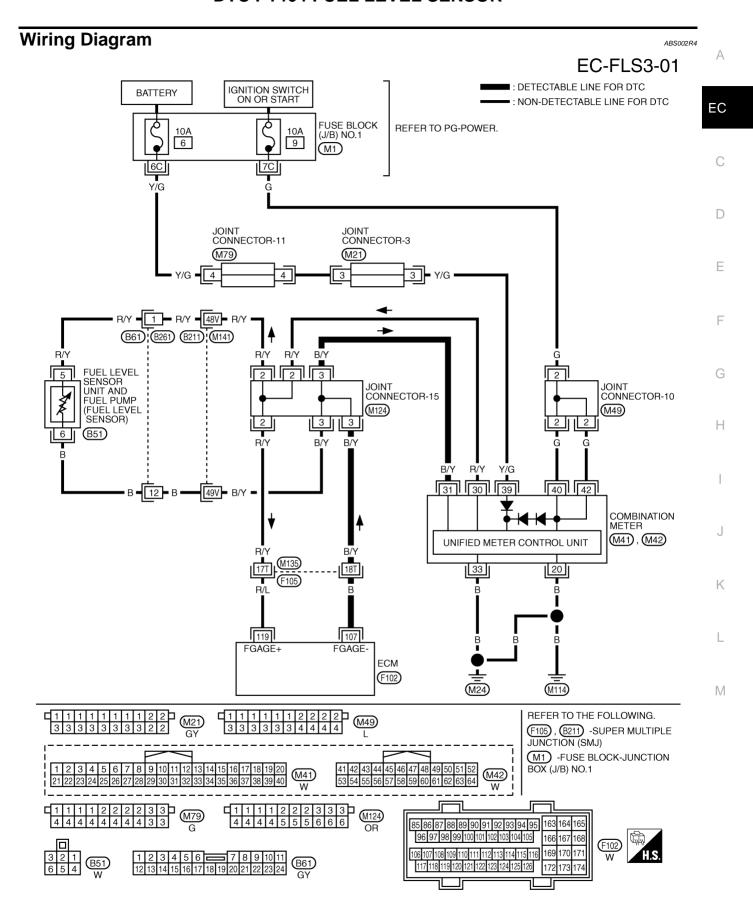
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1464	Fuel level sensor circuit	A high voltage from the sensor is sent to ECM.	Harness or connectors
1464	ground signal	A flight voltage from the sensor is sent to ECIVI.	(The sensor circuit is open or shorted)

DTC Confirmation Procedure

ABS002R3

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-576, "Diagnostic Procedure"

DATA MONITOR		
MONITOR	NO DTC	
FUEL T/TMP SE FUEL LEVEL SE	XXX °C	
		SEF195Y

WITH GST

Follow the procedure WITH CONSULT-II above.

TBWA0295E

DTC P1464 FUEL LEVEL SENSOR

Specification data are reference values and are measured between each terminal and ground.

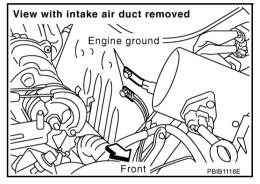
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
119	R/L	Fuel level sensor	[Ignition switch: ON]	Approximately 0 - 4.8V Output voltage varies with fuel level.
107	В	Fuel level sensor ground	[Engine is running] • Idle speed	Approximately 0V

Diagnostic Procedure

ABS002R5


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to EC-141, "Ground Inspection".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK FUEL LEVEL SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- 2. Disconnect combination meter harness connector.
- Check harness continuity between ECM terminal 107 and combination meter terminal 31. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F105, M135
- Joint connector-15
- Harness for open and short between ECM and combination meter.
 - >> Replace open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P1464 FUEL LEVEL SENSOR

Removal and Installation FUEL LEVEL SENSOR

ABS002R6

Α

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

EC

С

D

Е

F

G

Н

ı

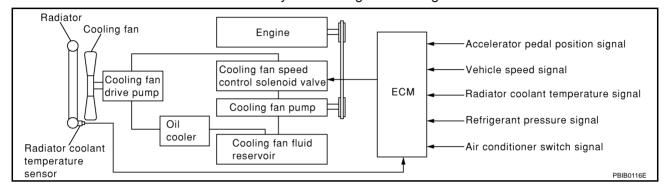
J

Κ

ï

DTC P1480 COOLING FAN SPEED CONTROL SOLENOID VALVE

PFP:21010


Description SYSTEM DESCRIPTION

ABS002R7

This system controls the cooling fan operating speed. The opening of the cooling fan speed control solenoid valve changes to control oil pressure provided to the cooling fan drive pump.

This system consists of the cooling fan pump, cooling fan drive pump, cooling fan speed control solenoid valve, oil cooler, cooling fan fluid reservoir, etc.

The cooling fan pump is operated by engine with the drive belts and provides oil pressure to the cooling fan drive pump which operates the cooling fan. The cooling fan speed control solenoid valve is installed between the cooling fan pump and cooling fan drive pump. The solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the solenoid valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions.

COOLING FAN SPEED CONTROL

Sensor	Input signal to ECM	ECM function	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed		
Accelerator pedal position sensor	Accelerator pedal position	=	
Radiator coolant temperature sensor	Radiator coolant temperature	Cooling fan speed control	Cooling fan speed control solenoid valve
Refrigerant pressure sensor	Refrigerant pressure	=	Soleriold valve
Wheel sensors*	Vehicle speed	=	
A/C auto amp.*	Air conditioner switch signal		

^{*:} This signal is sent to the ECM through CAN communication line.

The ECM controls the cooling fan speed corresponding to the engine speed, the radiator coolant temperature, refrigerant pressure, vehicle speed, air conditioner switch signal, etc.

The ECM determines the target fan speed based on the basic fan speed considering the radiator coolant temperature and the engine speed. The ECM controls fan speed between 0 to 2,550 rpm.

When the cooling fan speed control solenoid valve is malfunctioning (does not operate), the cooling fan is operated at the maximum speed by engine through the drive belts.

Cooling Fan Basic Speed

unit: rpm

Air condi-			Vehicle speed	
tioner	Refrigerant pressure	Less than 20 km/h (12 MPH)	20 - 80 km/h (12 - 50 MPH)	More than 80 km/h (50 MPH)
OFF	-	300	300	300
	Less than 680 kPa (6.94 kg/cm ² , 98.6 psi)	700	400	300
	680 - 1,660 kPa (6.94 - 16.93 kg/cm ² , 98.6 - 240.7 psi)	900	700	300
ON	1,660 - 1,960 kPa (16.93 - 19.99 kg/cm ² , 240.7 - 284.2 psi)	1100	1100	1250
	More than 1,960 kPa (19.99 kg/cm ² , 284.2 psi)	1250	1200	1250

COMPONENT DESCRIPTION

Cooling Fan Speed Control Solenoid Valve

The cooling fan speed control solenoid valve uses a ON/OFF duty to control the pressure of the cooling fan fluid from the cooling fan pump. This solenoid valve is moved by ON/OFF pulse from the ECM. The longer the ON pulse is sent to the solenoid valve, the lower speed the cooling fan operates.

CONSULT-II Reference Value in Data Monitor Mode

ABS002R8

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
TRGT FAN RPM	• Ignition switch: ON (Engine stopped)	0 rpm
TIOT FANTE W	Engine: Idle	300 - 2,550 rpm

On Board Diagnosis Logic

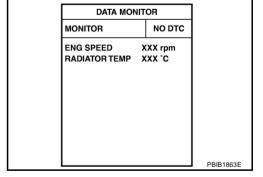
ABS002R9

This self-diagnosis has the one trip detection logic. The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause
P1480	Cooling fan speed control	A)	An excessively low ampere of current flows through the cooling fan speed control solenoid valve to ECM, even though the radiator coolant temperature is low,	Harness or connectors (Cooling fan speed control solenoid valve circuit is open
1480	solenoid valve circuit	B)	An excessively high ampere of current flows through the cooling fan speed control solenoid valve to ECM, even though the radiator coolant temperature is high.	or shorted.) • Cooling fan speed control solenoid valve

DTC Confirmation Procedure

ABS002RB


NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Confirm "RADIATOR TEMP" indicates less than 80 °C (176 °F). If not, cool down the engine.
- 4. Start engine and let it idle for at least 5 seconds.
- 5. If DTC is detected, go to EC-582, "Diagnostic Procedure".

With GST

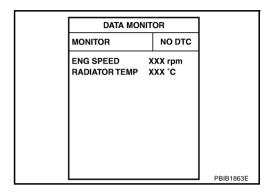
- Turn ignition switch ON.
- Set voltmeter probes between ECM terminal 122 (radiator coolant temperature sensor signal) and ground.
- 3. Check the voltage should be above 1.23V. If not, cool down the engine.
- 4. Start engine and let it idle for at least 5 seconds.
- 5. If DTC is detected, go to EC-582, "Diagnostic Procedure".

EC

Α

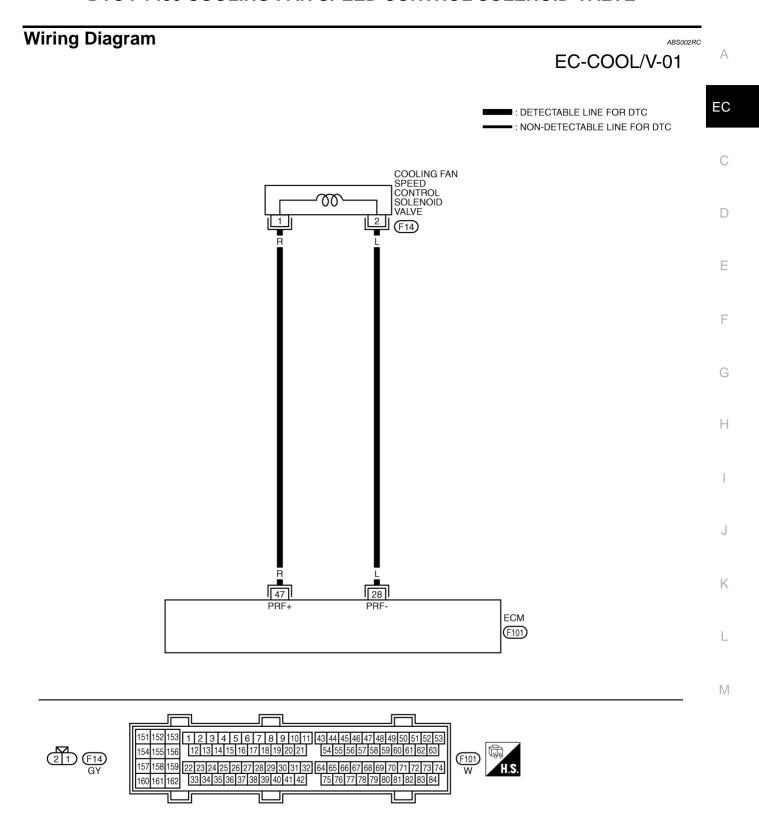
F

G


Н

L

PROCEDURE FOR MALFUNCTION B


(P) With CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect radiator coolant temperature sensor harness connector.
- 3. Connect 2.2 $k\Omega$ resistor to the radiator coolant temperature sensor harness connector.
- 4. Turn ignition switch ON.
- 5. Select "DATA MONITOR" mode with CONSULT-II.
- 6. Start engine and let it idle for at least 5 seconds.
- 7. If DTC is detected, go to EC-582, "Diagnostic Procedure".

With GST

Follow the procedure With CONSULT-II above.

TBWM0048E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

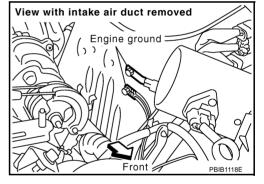
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
28	L	Cooling fan speed control solenoid valve ground	[Engine is running]	Approximately 0V
47	R	Cooling fan speed control solenoid valve	[Engine is running] ● Idle speed	6.5 - 8V★ → 10.0V/Div 2 ms/Div PBIB0049E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS


ABS002RD

- 1. Turn ignition switch OFF.
- Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "<u>Ground Inspection</u>".

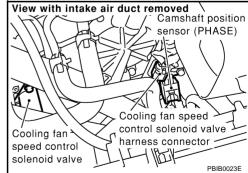
OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK COOLING FAN SPEED CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- Disconnect cooling fan speed control solenoid valve harness connector.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 47 and cooling fan speed control solenoid valve terminal 1. Refer to Wiring Diagram.


Continuity should exist.

4. Also check harness for short to ground and short to power in harness connectors.

OK >> GO TO 3.

OK or NG

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$\overline{3}$. CHECK COOLING FAN SPEED CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN **AND SHORT**

Check harness continuity between ECM terminal 28 and cooling fan speed control solenoid valve terminal

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground and short to power in harness or connectors.

4. CHECK COOLING FAN SPEED CONTROL SOLENOID VALVE

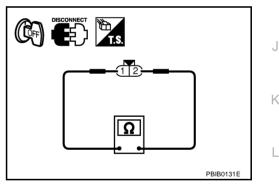
Refer to EC-583, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace cooling fan speed control solenoid valve.

5. CHECK INTERMITTENT INCIDENT


Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection COOLING FAN SPEED CONTROL SOLENOID VALVE

Check resistance between cooling fan speed control solenoid valve terminals 1 and 2.

Resistance: Approximately 8Ω [at 20° C (68°F)]

Removal and Installation **COOLING FAN SPEED CONTROL SOLENOID VALVE**

Cooling fan speed control solenoid valve is built-into the cooling fan pump which is assembled to water pump. Refer to CO-22, "WATER PUMP".

EC

Α

F

Н

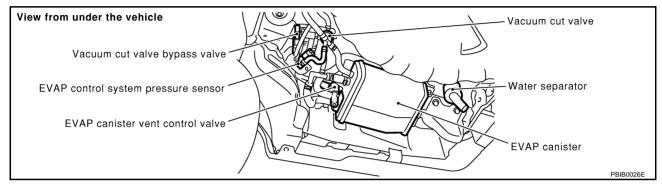
ABS002RE

ABS002RF

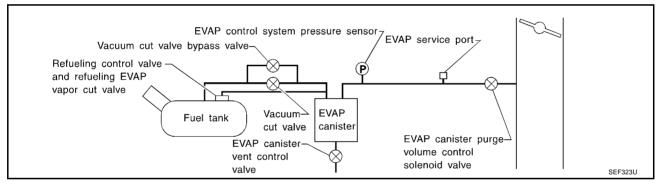
DTC P1490 VACUUM CUT VALVE BYPASS VALVE

PFP:17372

Description COMPONENT DESCRIPTION


ABS002RG

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.


The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II Reference Value in Data Monitor Mode

ABS002RH

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPAS S/V	• Ignition switch: ON	OFF

On Board Diagnosis Logic

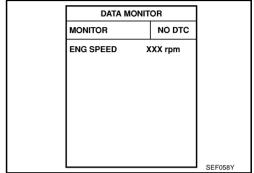
ABS002RI

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1490 1490	Vacuum cut valve bypass valve circuit	An improper voltage signal is sent to ECM through vacuum cut valve bypass valve.	Harness or connectors (The valve circuit is open or shorted.)Vacuum cut valve bypass valve

DTC Confirmation Procedure

ABS002RK

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 5 seconds.
- 4. If 1st trip DTC is detected, go to <u>EC-587, "Diagnostic Procedure"</u>

WITH GST

Follow the procedure WITH CONSULT-II above.

EC

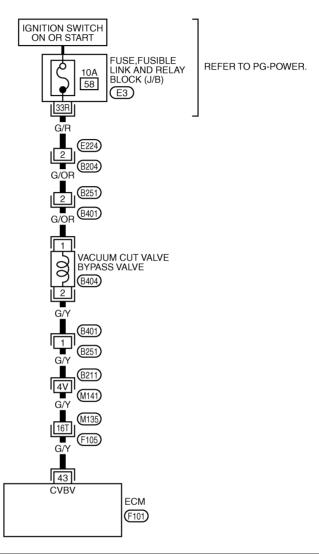
С

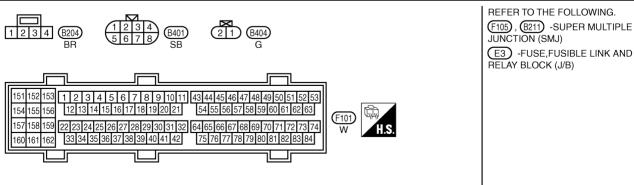
Α

D

F

Н


n


Wiring Diagram

ABSOUZEL

EC-BYPS/V-01

: DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC

TBWA0310E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE	ITEM	CONDITION	DATA (DC Voltage)
43	G/Y	Vacuum cut valve bypass valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2. CHECK VACUUM CUT VALVE BYPASS VALVE CIRCUIT

(P) With CONSULT-II

- 1. Turn ignition switch OFF and then ON.
- Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CON-SULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.
- 4. Make sure that clicking sound is heard from the vacuum cut valve bypass valve.

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

ACTIVE TES	Т	
VC/V BYPASS/V	OFF	
MONITOR	_	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
HO2S1 MNTR (B1)	LEAN	
HO2S1 MNTR (B2)	LEAN	
<u> </u>	1	PBIB0157E

EC

Α

ABS002RM

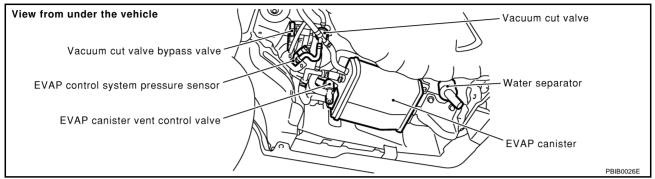
F

D

F

Н

G

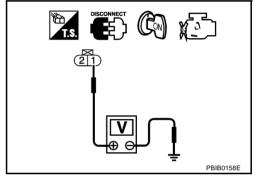

ı

J

K

3. CHECK VACUUM CUT VALVE BYPASS VALVE POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect vacuum cut valve bypass valve harness connector.



- 3. Turn ignition switch ON.
- 4. Check voltage between vacuum cut valve bypass valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B401, B251
- Harness connectors B204, E224
- Fuse, fusible link and relay block (J/B) connector E3
- 10A fuse
- Harness for open or short between vacuum cut valve bypass valve and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK VACUUM CUT VALVE BYPASS VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 43 and vacuum cut valve bypass valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B401, B251
- Harness connectors B211. M141
- Harness connectors M135, F105
- Harness for open or short between vacuum cut valve bypass valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK VACUUM CUT VALVE BYPASS VALVE

Refer to EC-589, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace vacuum cut valve bypass valve.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

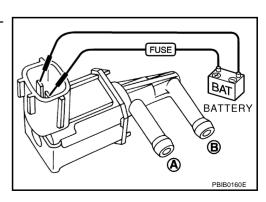
Component Inspection VACUUM CUT VALVE BYPASS VALVE

(P) With CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- Turn ignition switch ON.
- 3. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

Operation takes less than 1 second.


ACTIVE TEST VC/V BYPASS/V OFF MONITOR ENG SPEED XXX rpm A/F ALPHA-B1 XXX % A/F ALPHA-B2 XXX % HO2S1 MNTR (B1) LEAN HO2S1 MNTR (B2) LEAN PBIB0159E

With GST

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Operation takes less than 1 second.

EC

F

D

F

ARS002RN

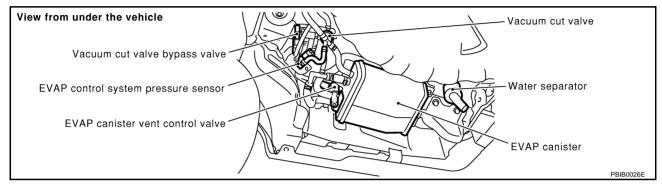
·

IV

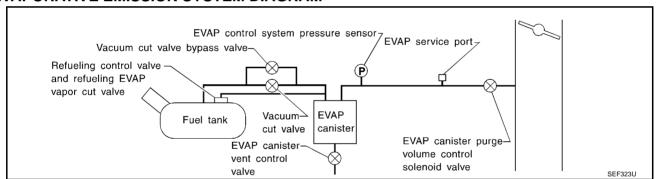
DTC P1491 VACUUM CUT VALVE BYPASS VALVE

PFP:17372

Description COMPONENT DESCRIPTION


ABS002RO

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.


The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis.

The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II Reference Value in Data Monitor Mode

ABS002RP

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPAS S/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

SOOSBO

Trouble diagnosis name	DTC detecting condition	Possible cause
		Vacuum cut valve bypass valve
		Vacuum cut valve
		Bypass hoses for clogging
		 EVAP control system pressure sensor and circuit
		EVAP canister vent control valve
Vacuum cut valve bypass valve	Vacuum cut valve bypass valve dose not operate properly.	 Hose between fuel tank and vacuum cut valve clogged
		 Hose between vacuum cut valve and EVAP canister clogged
		EVAP canister
		EVAP purge port of fuel tank for clogging
		Refueling purge EVAP vapor cut valve
		Refueling control valve
	Vacuum cut valve bypass	Vacuum cut valve bypass Vacuum cut valve bypass valve dose not

DTC Confirmation Procedure

ABS002RS

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Always perform test at a temperature of 5 to 30°C (41 to 86°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(I) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and let it idle for at least 70 seconds.
- 5. Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 6. Touch "START".

VC CUT/V BP/V P1491

OUT OF CONDITION

MONITOR

ENG SPEED XXX rpm

VHCL SPEED SE XXX km/h

B/FUEL SCHDL XXX msec

EC

Α

0

D

F

J

L

K

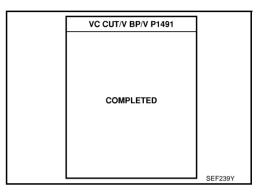
7. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

ENG SPEED	More than 1,000 rpm
Selector lever	Suitable position
VHCL SPEED SE	More than 37 km/h (23 MPH)
B/FUEL SCHDL	1.0 - 10.0 msec

VC CUT/V BP/V P1491

TESTING

MONITOR

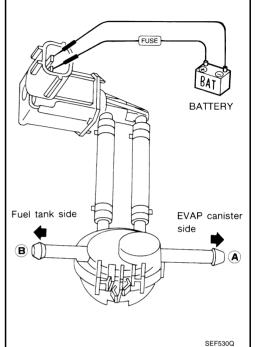

ENG SPEED XXX rpm

VHCL SPEED SE XXX km/h

B/FUEL SCHDL XXX msec

If "TESTING" is not displayed after 5 minutes, retry from step 3.

8. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-595, "Diagnostic Procedure".


Overall Function Check

3S002RT

Use this procedure to check the overall function of vacuum cut valve bypass valve. During this check, the 1st trip DTC might not be confirmed.

WITH GST

- 1. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 2. Apply vacuum to port **A** and check that there is no suction from port **B**.
- 3. Apply vacuum to port ${\bf B}$ and check that there is suction from port ${\bf A}$.
- 4. Blow air in port ${\bf B}$ and check that there is a resistance to flow out of port ${\bf A}$.
- 5. Supply battery voltage to the terminal.
- 6. Blow air in port A and check that air flows freely out of port B.
- 7. Blow air in port ${\bf B}$ and check that air flows freely out of port ${\bf A}$.
- 8. If NG, go to "EC-595, "Diagnostic Procedure".

EC

Α

С

D

Е

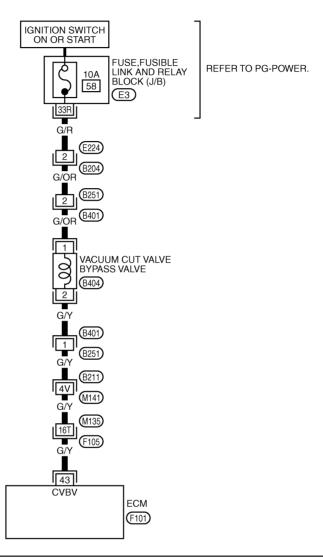
F

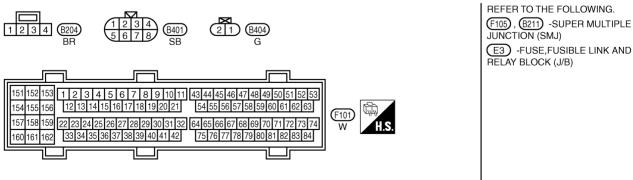
G

Н

J

<


L


Wiring Diagram

ABS002RU

EC-BYPS/V-01

: DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC

TBWA0310E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

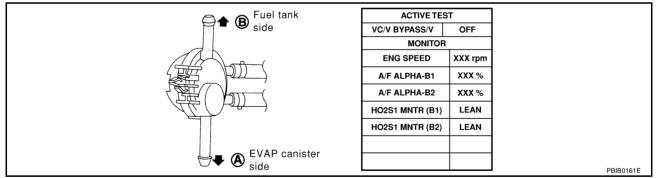
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

-	TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
_	43	G/Y	Vacuum cut valve bypass valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

1. INSPECTION START

Do you have CONSULT-II?


Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2. Check vacuum cut valve bypass valve operation

(I) With CONSULT-II

- Turn ignition switch OFF.
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port A and check that there is no suction from port B.
- 4. Apply vacuum to port B and check that there is suction from port A.
- 5. Blow air in port B and check that there is a resistance to flow out of port A.
- 6. Turn ignition switch ON.
- 7. Select "VC/V BYPASS/V" in "ACTIVE TEST" mode with CONSULT-II and touch "ON".
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port B and check that air flows freely out of port A.

OK or NG

OK >> GO TO 4. NG >> GO TO 5. EC

Α

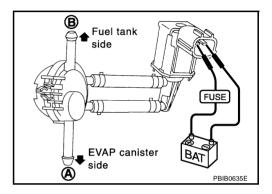
ABS002RV

Е

F

Н

L


3. CHECK VACUUM CUT VALVE BYPASS VALVE OPERATION

W Without CONSULT-II

- Turn ignition switch OFF.
- 2. Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 3. Apply vacuum to port A and check that there is no suction from port B.
- 4. Apply vacuum to port B and check that there is suction from port A.
- 5. Blow air in port B and check that there is a resistance to flow out of port A.
- 6. Disconnect vacuum cut valve bypass valve harness connector.
- 7. Supply battery voltage to the terminal.
- 8. Blow air in port A and check that air flows freely out of port B.
- 9. Blow air in port B and check that air flows freely out of port A.

OK or NG

OK >> GO TO 4. NG >> GO TO 7.

4. CHECK EVAP PURGE LINE

Check EVAP purge line between EVAP canister and fuel tank for clogging or disconnection.

OK or NG

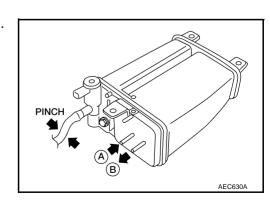
OK >> GO TO 5. NG >> Repair it.

5. CHECK EVAP PURGE PORT

Check EVAP purge port of fuel tank for clogging.

OK or NG

OK >> GO TO 6.


NG >> Clean EVAP purge port.

6. CHECK EVAP CANISTER

- 1. Pinch the fresh air hose.
- 2. Blow air into port ${\bf A}$ and check that it flows freely out of port ${\bf B}$. OK or NG

OK >> GO TO 12.

NG >> Replace EVAP canister.

7. CHECK BYPASS HOSE	۸
Check bypass hoses for clogging.	Α
OK or NG OK >> GO TO 8.	EC
NG >> Repair or replace hoses.	
8. CHECK VACUUM CUT VALVE BYPASS VALVE	С
Refer to EC-598, "Component Inspection".	
OK or NG OK >> GO TO 9.	D
NG >> Replace vacuum cut valve bypass valve.	
9. CHECK VACUUM CUT VALVE	Е
Refer to EC-598, "Component Inspection".	_
OK or NG OK >> GO TO 10.	F
NG >> Replace vacuum cut valve.	G
10. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR HOSE	G
1. Turn ignition switch OFF. 2. Check disconnection or impreparation of bear connected to EVAD control system procesure connection.	Н
 Check disconnection or improper connection of hose connected to EVAP control system pressure sensor. OK or NG 	
OK >> GO TO 11. NG >> Repair or replace.	
11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR	
 Disconnect EVAP control system pressure sensor harness connector. Check connectors for water. 	J
Water should not exist.	K
OK or NG	
OK >> GO TO 12. NG >> Replace EVAP control system pressure sensor.	L
12. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR	M
Refer to EC-369, "Component Inspection".	101
OK or NG OK >> GO TO 13.	
NG >> Replace EVAP control system pressure sensor.	
13. CHECK RUBBER TUBE FOR CLOGGING	
Disconnect rubber tube connected to EVAP canister vent control valve.	
Check the rubber tube for clogging.OK or NG	
OK >> GO TO 14. NG >> Clean the rubber tube using an air blower.	

14. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-564, "Component Inspection".

OK or NG

OK >> GO TO 15.

NG >> Replace EVAP canister vent control valve.

15. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-701, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace fuel tank.

16. CHECK REFUELING CONTROL VALVE

Refer to EC-701, "Component Inspection".

OK or NG

OK >> GO TO 17.

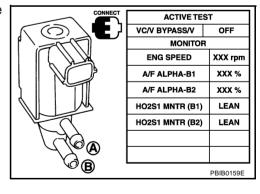
NG >> Replace fuel tank.

17. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection VACUUM CUT VALVE BYPASS VALVE

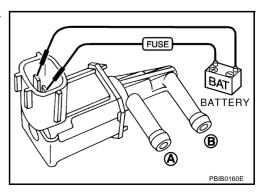

ABS002RW

(P) With CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

Condition VC/V BYPASS/V	Air passage continuity between A and B
ON	Yes
OFF	No

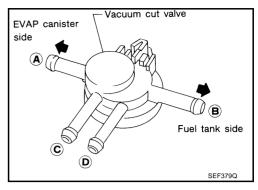
Operation takes less than 1 second.



With GST

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No


Operation takes less than 1 second.

VACUUM CUT VALVE

Check vacuum cut valve as follows:

- Plug port C and D with fingers.
- Apply vacuum to port A and check that there is no suction from port B.
- Apply vacuum to port B and check that there is suction from port A.
- Blow air in port B and check that there is a resistance to flow out of port A.
- Open port C and D.
- Blow air in port A check that air flows freely out of port C.
- Blow air in port B check that air flows freely out of port D.

EC

Α

С

D

Е

F

G

Н

Κ

L

DTC P1706 PNP SWITCH

PFP:32006

Component Description

ABS002RX

When the selector lever position is P or N, park/neutral position (PNP) switch is ON. ECM detects the position because the continuity of the line (the ON signal) exists.

CONSULT-II Reference Value in Data Monitor Mode

ABS002RY

Specification data are reference values.

MONITOR ITEM	CON	NDITION	SPECIFICATION
P/N POSI SW	Ignition switch: ON	Selector lever: P or N	ON
17141 001 00	• Igilition switch. Oil	Selector lever: Except above	OFF

On Board Diagnosis Logic

ABS002RZ

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1706 1706	Park/neutral position switch	The signal of the park/neutral position (PNP) switch is not changed in the process of engine starting and driving.	 Harness or connectors [The park/neutral position (PNP) switch circuit is open or shorted.] Park/neutral position (PNP) switch A/T assembly TCM (Transmission control module)

DTC Confirmation Procedure

ABS002S0

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known-good signal
N or P position	ON
Except above position	OFF

If NG, go to $\underline{\text{EC-603}}$, "Diagnostic Procedure" .

If OK, go to following step.

- Select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and warm it up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	More than 1,200 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	2.0 - 31 msec
VHCL SPEED SE	More than 64 km/h (40 MPH)
Selector lever	Suitable position

6. If 1st trip DTC is detected, go to EC-603, "Diagnostic Procedure"

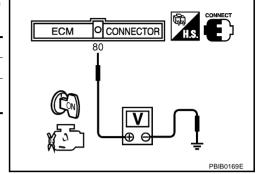
NO DTC
ON

DATA MON	NITO	OR	
MONITOR		NO DTC	
ENG SPEED	х	XX rpm	
COOLAN TEMP/S	,	xxx ∘c	
VHCL SPEED SE	X	XX km/h	
P/N POSI SW		OFF	
B/FUEL SCHDL	XX	(X msec	SEF213Y

Revision: 2004 October **EC-600** 2004 M45

Overall Function Check

3500251


Use this procedure to check the overall function of the park/neutral position (PNP) switch circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 80 (PNP switch signal) and ground under the following conditions.

Position (Selector lever)	Voltage V (Known good data)	
P or N position	Approx. 0	
Except above position	BATTERY VOLTAGE (11 - 14V)	

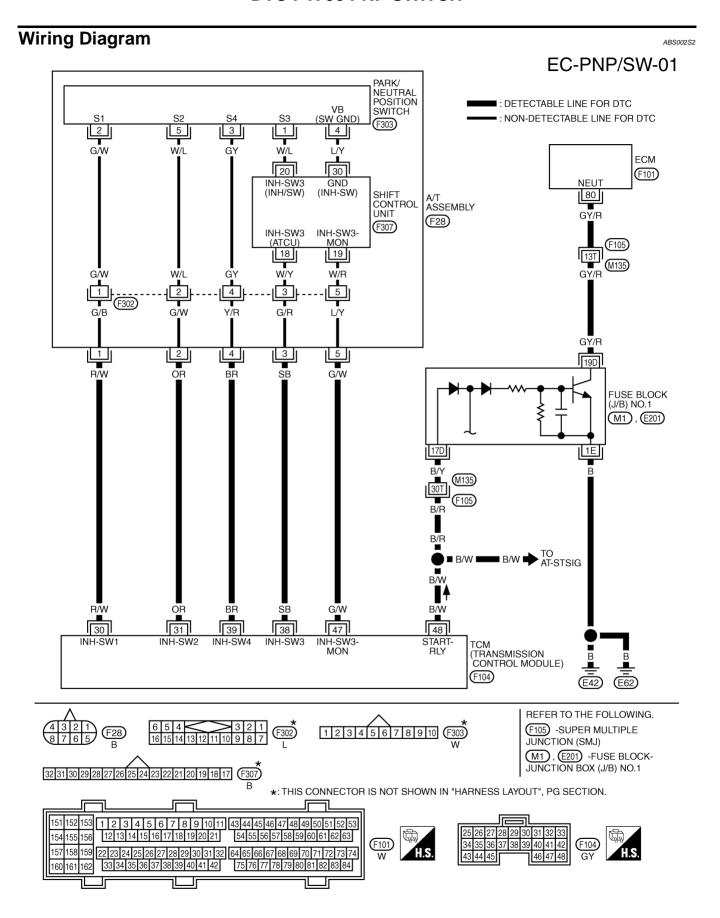
3. If NG, go to EC-603, "Diagnostic Procedure".

EC

Α

D

Е


F

G

Н

Κ

_

TBWA0302E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
80	80 GY/R PNP switch		[Ignition switch: ON] • Selector lever: P or N.	Approximately 0V
80			[Ignition switch: ON] • Except above position	Approximately 5V

Diagnostic Procedure

ABS002S3

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2. CHECK PNP SWITCH SIGNAL

G

Α

EC

D

F

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "A/T", then "DATA MONITOR" mode with CONSULT-II.
- 3. Select "P/N POSI SW" signal and check its indication under the following conditions.

Position (Selector lever)	P/N POSI SW
P or N position	ON
Other position	OFF

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

DATA MONIT	OR	
MONITORING	NO DTC	
P/N POSI SW	ON	
		PBIB0102E
		F DIDUTUZE

3. CHECK PNP SWITCH

⋈ Without CONSULT-II

Confirm that the PNP switch signal is sent to TCM correctly.

Refer to AT-110, "DTC P0705 PARK/NEUTRAL POSITION SWITCH".

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. CHECK PNP SWITCH CIRCUIT

Check the PNP switch circuit.

Refer to AT-110, "DTC P0705 PARK/NEUTRAL POSITION SWITCH".

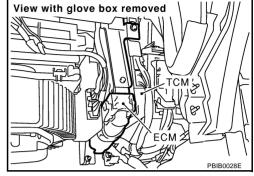
>> INSPECTION END

I

Н

L/

5. CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I


- 1. Turn ignition switch OFF.
- 2. Disconnect TCM harness connector.
- Disconnect fuse block (J/B) No. 1 harness connector.
- Check harness continuity between TCM terminal 48 and fuse block (J/B) No.1 terminal 17D. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F105, M135
- Harness for open or short between TCM and fuse block (J/B) No. 1

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

Check harness continuity between fuse block (J/B) No. 1 terminal 1E and ground. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to power.

OK or NG

OK >> GO TO 8.

>> Repair open circuit or short to power in harness or connectors. NG

8. CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-III

- Disconnect ECM harness connector. 1.
- Check harness continuity between ECM terminal 80 and fuse block (J/B) No. 1 terminal 19D. 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 10. >> GO TO 9. NG

9. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F105, M135
- Harness for open or short between ECM and fuse block (J/B) No. 1
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

 TCM terminal 30 and A/T assembly terminal 1 TCM terminal 31 and A/T assembly terminal 2 TCM terminal 38 and A/T assembly terminal 3 TCM terminal 39 and A/T assembly terminal 4 TCM terminal 47 and A/T assembly terminal 5 OK or NG OK or NG OK >> GO TO 11. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 11. CHECK FUSE BLOCK (J/B) NO. 1 Refer to PG-62, "FUSE BLOCK - JUNCTION BOX (J/B) NO.1" OK or NG OK or NG OK >> GO TO 12. NG >> Replace fuse block (J/B) No. 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . >> INSPECTION END 		rness continuity between the following;	
TCM terminal 38 and A/T assembly terminal 3 TCM terminal 39 and A/T assembly terminal 4 TCM terminal 47 and A/T assembly terminal 5 OK or NG OK >> GO TO 11. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 11. CHECK FUSE BLOCK (J/B) NO. 1 Refer to PG-62, "FUSE BLOCK - JUNCTION BOX (J/B) NO.1". OK or NG OK >> GO TO 12. NG >> Replace fuse block (J/B) No. 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".		·	
TCM terminal 39 and A/T assembly terminal 4 TCM terminal 47 and A/T assembly terminal 5 OK or NG OK >> GO TO 11. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 11. CHECK FUSE BLOCK (J/B) NO. 1 Refer to PG-62, "FUSE BLOCK - JUNCTION BOX (J/B) NO.1" OK or NG OK >> GO TO 12. NG >> Replace fuse block (J/B) No. 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".		·	
TCM terminal 47 and A/T assembly terminal 5 OK or NG OK >> GO TO 11. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 11. CHECK FUSE BLOCK (J/B) NO. 1 Refer to PG-62, "FUSE BLOCK - JUNCTION BOX (J/B) NO.1". OK or NG OK >> GO TO 12. NG >> Replace fuse block (J/B) No. 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".		·	
OK or NG OK >> GO TO 11. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 11. CHECK FUSE BLOCK (J/B) NO. 1 Refer to PG-62, "FUSE BLOCK - JUNCTION BOX (J/B) NO.1" OK or NG OK >> GO TO 12. NG >> Replace fuse block (J/B) No. 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".		·	
NG >> Repair open circuit or short to ground or short to power in harness or connectors. 11. CHECK FUSE BLOCK (J/B) NO. 1 Refer to PG-62, "FUSE BLOCK - JUNCTION BOX (J/B) NO.1". OK or NG OK >> GO TO 12. NG >> Replace fuse block (J/B) No. 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".		·	
11. CHECK FUSE BLOCK (J/B) NO. 1 Refer to PG-62, "FUSE BLOCK - JUNCTION BOX (J/B) NO.1". OK or NG OK >> GO TO 12. NG >> Replace fuse block (J/B) No. 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".			
Refer to PG-62, "FUSE BLOCK - JUNCTION BOX (J/B) NO.1". OK or NG OK >> GO TO 12. NG >> Replace fuse block (J/B) No. 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".			
OK or NG OK >> GO TO 12. NG >> Replace fuse block (J/B) No. 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	11. сн	ECK FUSE BLOCK (J/B) NO. 1	
OK or NG OK >> GO TO 12. NG >> Replace fuse block (J/B) No. 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	Refer to	PG-62, "FUSE BLOCK - JUNCTION BOX (J/B) NO.1" .	
NG >> Replace fuse block (J/B) No. 1. 12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".			
12. CHECK INTERMITTENT INCIDENT Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".			
Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".			
	12. ch	ECK INTERMITTENT INCIDENT	
>> INSPECTION END	Refer to	EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	
>> INSPECTION END	•		
		>> INSPECTION END	

DTC P1720 VEHICLE SPEED SENSOR (A/T OUTPUT)

DTC P1720 VEHICLE SPEED SENSOR (A/T OUTPUT)

PFP:31036

DescriptionABS00254

NOTE:

If DTC P1720 is displayed with DTC U1000, first perform the trouble diagnosis for DTC U1000. Refer to EC-143, "DTC U1000, U1001 CAN COMMUNICATION LINE".

ECM receives two vehicle speed sensor signals via CAN communication line. One is sent from VDC/TCS/ABS control unit, and the other is from TCM (Transmission control module). ECM uses these two signals for engine control.

CONSULT-II Reference Value in Data Monitor Mode

ABS002S5

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VHCL SPEED SE	Turn drive wheels and compare the CONSULT-II value with speedometer indication.	Almost the same speed as the speedometer indication

On Board Diagnosis Logic

ABS002S6

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1720 1720	Vehicle speed sensor (A/T output)	ECM detects a difference between two vehicle speed sensor signals is out of the specified range.	Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (Revolution sensor circuit is open or shorted) Harness or connectors (Wheel sensor circuit is open or shorted.) TCM (Transmission control module) VDC/TCS/ABS control unit
			Combination meter

DTC Confirmation Procedure

ABS002S8

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine.
- 4. Drive vehicle at a speed of 20 km/h (12 MPH) or more for at least 5 seconds without brake pedal depressing.
- 5. If 1st trip DTC is detected, go to EC-607, "Diagnostic Procedure".

WITH GST

Follow the procedure WITH CONSULT-II above.

DTC P1720 VEHICLE SPEED SENSOR (A/T OUTPUT)

Diagnostic Procedure 1. check dtc with tcm	ABS002S9	А
Check DTC with TCM. Refer to AT-43, "TROUBLE DIAGNOSIS".		- (
<u>OK or NG</u> OK >> GO TO 2.		EC
NG >> Perform trouble shooting relevant to DTC indicated.		С
2. CHECK DTC WITH VDC/TCS/ABS CONTROL UNIT		
Check DTC with VDC/TCS/ABS control unit. Refer to BRC-11, "TROUBLE DIAGNOSIS". OK or NG		D
OK >> GO TO 3. NG >> Perform trouble shooting relevant to DTC indicated.		Е
3. CHECK COMBINATION METER		
Check combination meter function. Refer to DI-6, "COMBINATION METERS".		F
>> INSPECTION END		
>> ING! LCTION LIND		G
		Н
		-
		J
		K
		1,

DTC P1780 SHIFT CHANGE SIGNAL

DTC P1780 SHIFT CHANGE SIGNAL

PFP:31036

Description

NOTE:

If DTC P1780 is displayed with DTC U1000, first perform the trouble diagnosis for DTC U1000. Refer to EC-143, "DTC U1000, U1001 CAN COMMUNICATION LINE".

ECM receives current gear position signal, next gear position signal, shift change signal, shift pattern signal through CAN communication line from TCM (Transmission control module). ECM uses these four signals for engine control.

On Board Diagnosis Logic

ABS002SB

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause
P1780	Obits about a cine of	A)	The next gear position signal and the current gear position signal are not in the normal pattern compared with the shift pattern signal,	Harness or connectors (CAN communication line circuit is open or shorted)
1780	Shift change signal	B)	The next gear position signal and the current gear position signal are different even through the shift change signal is OFF.	TCM (Transmission control module)A/T unit assembly

DTC Confirmation Procedure

ABS002SD

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Perform DTC confirmation procedure for DTC P1754, refer to AT-185, "DTC Confirmation Procedure".
- If 1st trip DTC is detected, go to <u>AT-187, "Diagnostic Procedure"</u>.

WITH GST

Follow the procedure WITH CONSULT-II above.

Diagnostic Procedure

ABS002SE

1. CHECK DTC WITH TCM

Check DTC with TCM. Refer to AT-43, "TROUBLE DIAGNOSIS".

OK or NG

OK >> GO TO 2.

NG >> Perform trouble shooting relevant to DTC indicated.

2. CHECK TCM FUNCTION

Refer to AT-43, "TROUBLE DIAGNOSIS".

OK or NG

OK >> GO TO 3.

NG >> Replace TCM. Refer to AT-7, "PRECAUTIONS".

DTC P1780 SHIFT CHANGE SIGNAL

3. REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of IVIS (NATS) system and registration of all IVIS (NATS) ignition key IDs. Refer to BL-174, "ECM Re-Communicating Function" .
- 3. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 4. Perform EC-44, "Throttle Valve Closed Position Learning".
- 5. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

EC

С

D

Е

F

G

Н

v

L

DTC P1805 BRAKE SWITCH

DTC P1805 BRAKE SWITCH

PFP:25320

Description

ABS002SF

Brake switch signal is applied to the ECM through the stop lamp switch when the brake pedal is depressed. This signal is used mainly to decrease the engine speed when the vehicle is driving.

CONSULT-II Reference Value in Data Monitor Mode

ABS002SG

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW	Ignition switch: ON	Brake pedal: Fully released	OFF
DIVARLE OW	• Ignition switch: ON	Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

ABS002SH

The MIL will not light up for this diagnosis.

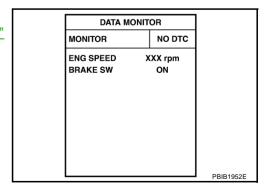
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1805 1805	Brake switch	A brake switch signal is not sent to ECM for an extremely long time while the vehicle is driving.	 Harness or connectors (Stop lamp switch circuit is open or shorted.) Stop lamp switch

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Engine operation condition in fail-fail safe mode

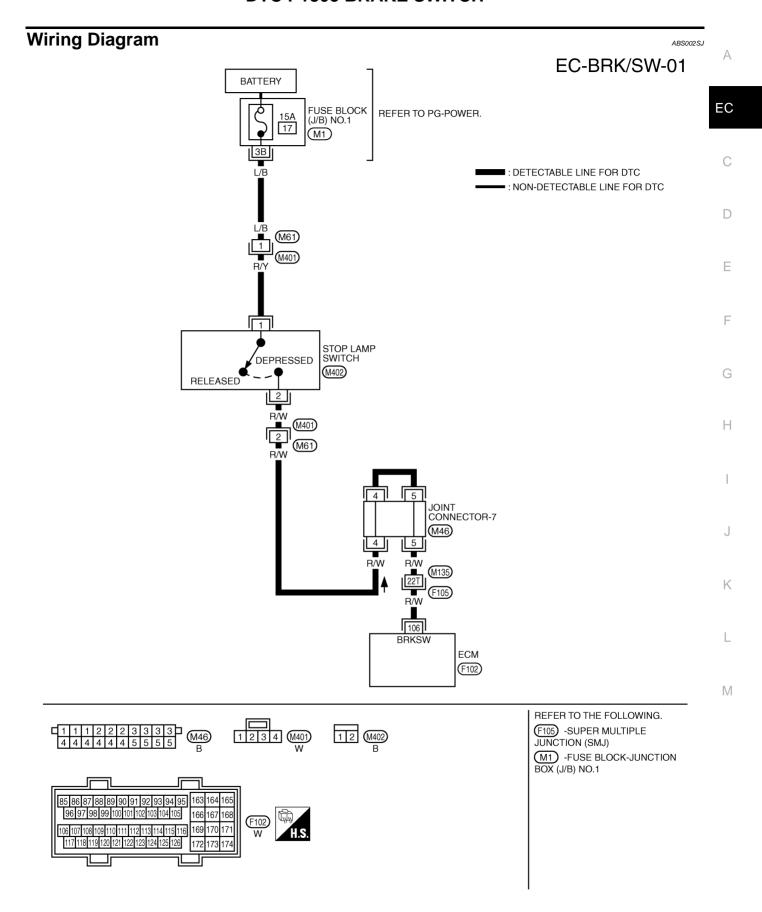
ECM controls the electric throttle control actuator by regulating the throttle opening to a small range. Therefore, acceleration will be poor.


Vehicle condition	Driving condition
When engine is idling	Normal
When accelerating	Poor acceleration

DTC Confirmation Procedure

ABS002SI

(P) WITH CONSULT-II


- Turn ignition switch ON.
- 2. Fully depress the brake pedal for at least 5 seconds.
- Erase the DTC with CONSULT-II.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. If 1st trip DTC is detected, go to EC-612, "Diagnostic Procedure"

WITH GST

Follow the procedure WITH CONSULT-II above.

DTC P1805 BRAKE SWITCH

TBWA0303E

DTC P1805 BRAKE SWITCH

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

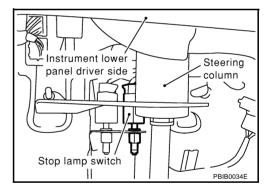
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
106	R/W	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
			[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

ABS002SK

1. CHECK STOP LAMP SWITCH CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check the stop lamp when depressing and releasing the brake pedal.

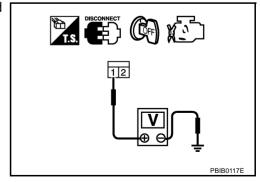

Brake pedal	Stop lamp	
Fully released	Not illuminated	
Slightly depressed	Illuminated	

OK or NG

OK >> GO TO 4. NG >> GO TO 2.

2. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

1. Disconnect stop lamp switch harness connector.



2. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

DTC P1805 BRAKE SWITCH

$\overline{3}$. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M61, M401
- Fuse block (J/B) No. 1 connector M1
- 15A fuse
- Harness for open and short between stop lamp switch and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector. 1.
- 2. Disconnect stop lamp switch harness connector.
- Check harness continuity between ECM terminal 106 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. >> GO TO 5. NG

5. DETECT MALFUNCTIONING PART

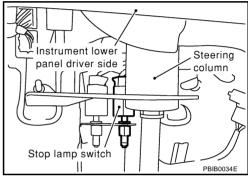
Check the following.

- Harness connectors M401, M61
- Harness connectors M135, F105
- Joint connector-7
- Harness for open or short between ECM and stop lamp switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK STOP LAMP SWITCH

Refer to EC-614, "Component Inspection".

OK or NG


OK >> GO TO 7.

NG >> Replace stop lamp switch.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

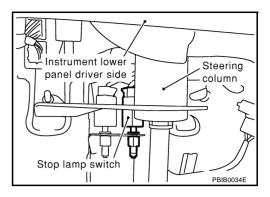
>> INSPECTION END

EC

D

F

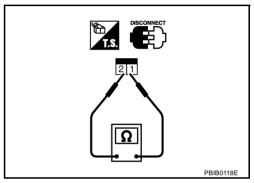
Н


M

DTC P1805 BRAKE SWITCH

Component Inspection STOP LAMP SWITCH

ABS002SL


1. Disconnect stop lamp switch harness connector.

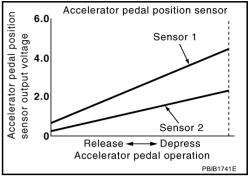
2. Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Conditions	Continuity
Brake pedal: Fully released	Should not exist.
Brake pedal: Slightly depressed	Should exist.

3. If NG, adjust stop lamp switch installation, refer to <u>BR-6</u>, <u>"BRAKE PEDAL"</u>, and perform step 2 again.

DTC P2122, P2123 APP SENSOR

PFP:18002


Component Description

ABS002SM

Electric throttle control actuator consists of throttle control motor, acceleration pedal position sensor, throttle position sensor, etc.

Accelerator pedal position sensor is connected to the accelerator pedal through the throttle drum and accelerator wire, and detects the accelerator pedal position by the throttle drum rotation angle.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

ABS002SN

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
ACCEL SEN 2*	(engine stopped)Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
	(engine stopped) • Selector lever: D	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differ from ECM terminal voltage signal.

On Board Diagnosis Logic

ABS002SO

NOTE:

If DTC P2122, P2123 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to $\frac{\text{EC-531}}{\text{CC-531}}$.

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2122 2122	Accelerator pedal position sensor 1 circuit low input	An excessively low voltage from the APP sensor 1 is sent to ECM.	Harness or connectors (The APP sensor 1 circuit is open or
P2123 2123	Accelerator pedal position sensor 1 circuit high input	An excessively high voltage from the APP sensor 1 is sent to ECM.	shorted.) • Accelerator pedal position sensor (Accelerator pedal position sensor 1)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

EC-615

So, the acceleration will be poor.

EC

Α

F

Н

M

2004 M45

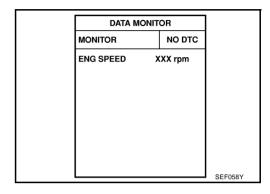
The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

DTC Confirmation Procedure

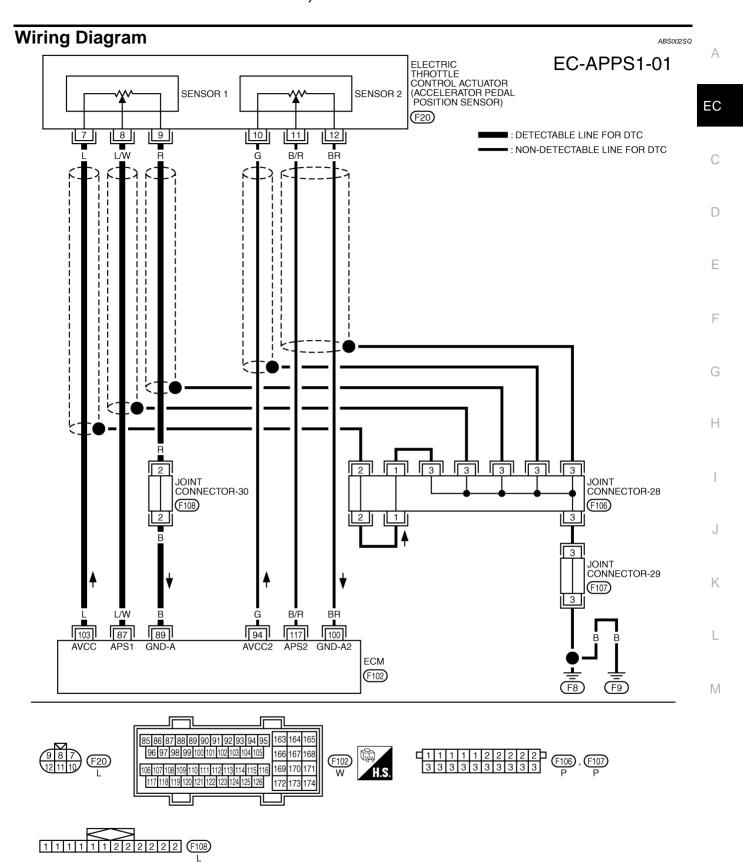
ABS002SP

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.


(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-618, "Diagnostic Procedure" .

WITH GST

Follow the procedure WITH CONSULT-II above.

TBWA0284E

Specification data are reference values and are measured between each terminal and ground.

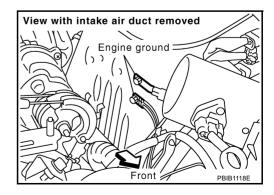
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		, Accelerator pedal position	[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully released	More than 0.36V
87	L/W	sensor 1	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	Less than 4.75V
89	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
94	G	Sensor power supply (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 2.5V
100	BR	Sensor ground (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 0V
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V
447		B/R Accelerator pedal position sensor 2	[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully released	More than 0.18V
117 B/R	B/K		 [Ignition switch ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	Less than 2.37V

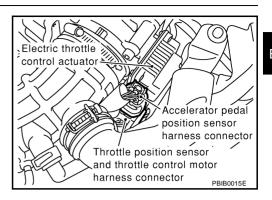
Diagnostic Procedure

ABS002SR


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

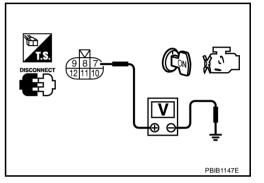

OK >> GO TO 2.

NG >> Repair or replace ground connections.

$\overline{2}$. CHECK APP SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.

3. Check voltage between electric throttle control actuator terminal 7 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair or

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK APP SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 9 and ECM terminal 89. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-30
- Harness for open or short between ECM and electric throttle control actuator
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 87 and electric throttle control actuator terminal 8. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

Revision: 2004 October **EC-619** 2004 M45

EC

С

D

Е

F

G

Н

J

Κ

M

1 V I

6. CHECK APP SENSOR

Refer to EC-620, "Component Inspection".

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

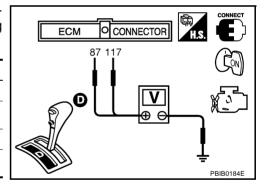
7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning" .
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

8. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

ABS002SS

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- Check voltage between ECM terminals 87 (APP sensor 1 signal), 117 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
87	Fully released	More than 0.36V
(Accelerator pedal position sensor 1)	Fully depressed	Less than 4.75V
117	Fully released	More than 0.18V
(Accelerator pedal position sensor 2)	Fully depressed	Less than 2.37V

- 4. If NG, replace accelerator pedal assembly.
- 5. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-44, "Throttle Valve Closed Position Learning".
- 7. Perform EC-44, "Idle Air Volume Learning".

Removal and Installation ACCELERATOR PEDAL

ABS002ST

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM".

DTC P2127, P2128 APP SENSOR

PFP:18002

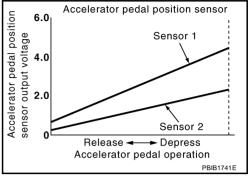
Component Description

ABS002SU

Α

EC

F


Н

M

Electric throttle control actuator consists of throttle control motor, acceleration pedal position sensor, throttle position sensor, etc.

Accelerator pedal position sensor is connected to the accelerator pedal through the throttle drum and accelerator wire, and detects the accelerator pedal position by the throttle drum rotation angle.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

ABS002SV

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
ACCEL SEN 2*	(engine stopped)Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
	(engine stopped)Selector lever: D	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differ from ECM terminal voltage signal.

On Board Diagnosis Logic

ABS002SW

NOTE:

If DTC P2127, P2128 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to $\frac{\text{EC-531}}{\text{CC-531}}$.

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1227 1227	Accelerator pedal position sensor 2 circuit low input	An excessively low voltage from the APP sensor 2 is sent to ECM.	Harness or connectors (The APP sensor 2 circuit is open or
P1228 1228	Accelerator pedal position sensor 2 circuit high input	An excessively high voltage from the APP sensor 2 is sent to ECM.	shorted.) • Accelerator pedal position sensor (Accelerator pedal position sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

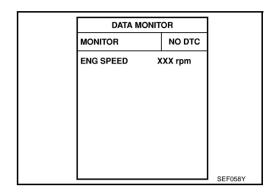
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

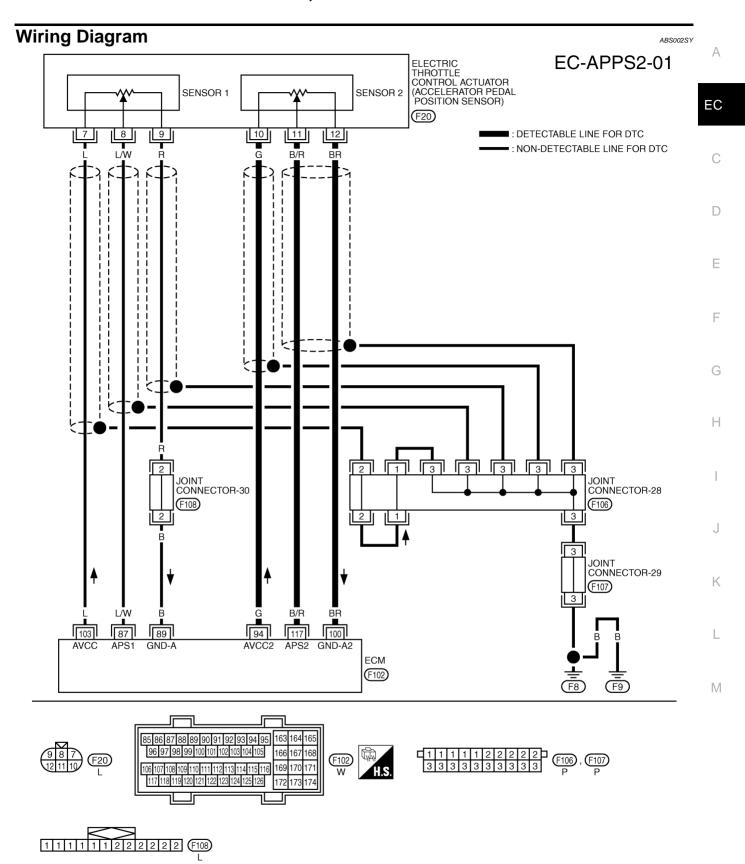
ABS002SX

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.


(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-624, "Diagnostic Procedure" .

WITH GST

Follow the procedure WITH CONSULT-II above.

TBWA0285E

Specification data are reference values and are measured between each terminal and ground.

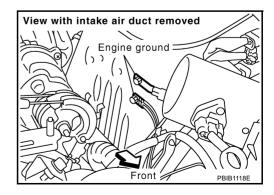
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
0.7	Accelerate	Accelerator pedal position	[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully released	More than 0.36V
87	L/W	sensor 1	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	Less than 4.75V
89	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
94	G	Sensor power supply (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 2.5V
100	BR	Sensor ground (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 0V
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V
447	D /D	Accelerator pedal position	[Ignition switch: ON]Engine stoppedSelector lever: DAccelerator pedal: Fully released	More than 0.18V
117 B/R	sensor 2	 [Ignition switch: ON] Engine stopped Selector lever: D Accelerator pedal: Fully depressed 	Less than 2.37V	

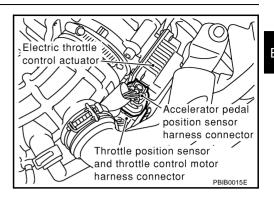
Diagnostic Procedure

ABS002SZ


1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

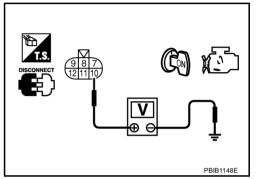

OK >> GO TO 2.

NG >> Repair or replace ground connections.

$\overline{2}$. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT

- Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.

Check voltage between electric throttle control actuator terminal 10 and ground with CONSULT-II or tester.


Voltage: Approximately 2.5V

OK or NG

OK >> GO TO 3.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 12 and ECM terminal 100. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 117 and electric throttle control actuator terminal 11. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-626, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

EC-625 Revision: 2004 October 2004 M45

EC

D

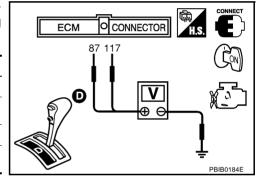
Н

6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning" .
- Perform <u>EC-44</u>, "Throttle Valve Closed Position Learning".
- 4. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK INTERMITTENT INCIDENT


Refer to EC-132. "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

- Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- Check voltage between ECM terminals 87 (APP sensor 1 signal), 117 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
87	Fully released	More than 0.36V
(Accelerator pedal position sensor 1)	Fully depressed	Less than 4.75V
117	Fully released	More than 0.18V
(Accelerator pedal position sensor 2)	Fully depressed	Less than 2.37V

- If NG, replace accelerator pedal assembly.
- 5. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-44, "Throttle Valve Closed Position Learning".
- 7. Perform EC-44, "Idle Air Volume Learning".

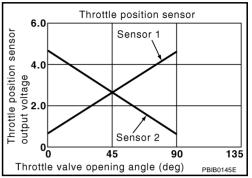
Removal and Installation ACCELERATOR PEDAL

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM".

ABS002T1

ABS002T0

DTC P2135 TP SENSOR


PFP:16119

Component Description

ABS002T2

Electric throttle control actuator consists of throttle control motor, accelerator pedal position sensor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

ABS002T3

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN 1 THRTL SEN 2*	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	More than 0.36V
	Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

ABS002T4

NOTE:

If DTC P2135 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to $\underline{\text{EC-531}}$.

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2135 2135	Throttle position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from TP sensor 1 and TP sensor 2.	 Harness or connector (The TP sensor 1 and 2 circuit is open or shorted.) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

EC

Α

D

F

ŀ

J

M

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

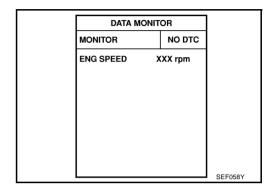
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

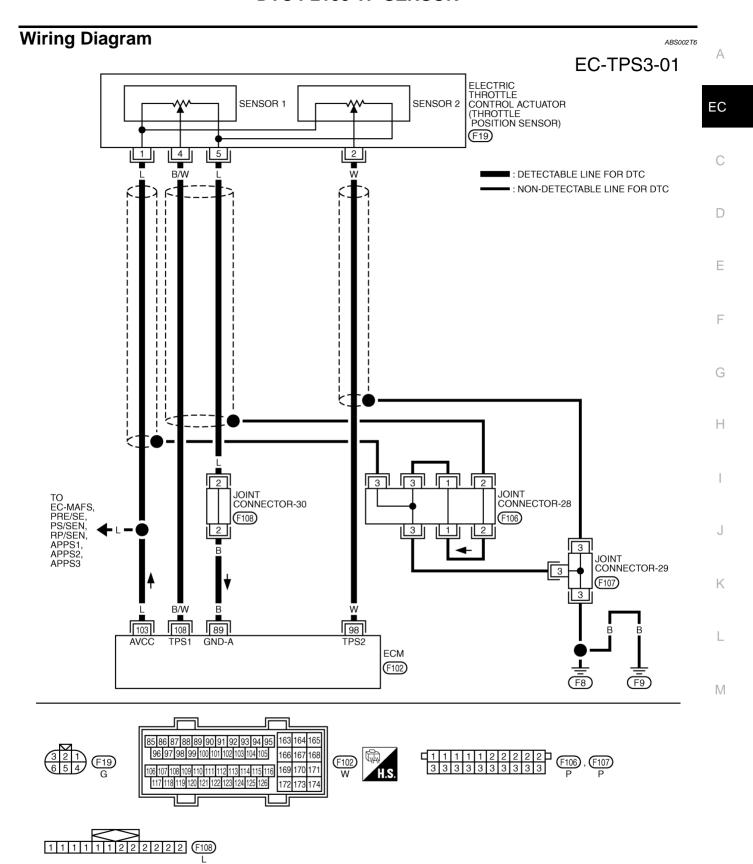
ABS002T5

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.


(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-630, "Diagnostic Procedure" .

WITH GST

Follow the procedure WITH CONSULT-II above.

TBWA0283E

Specification data are reference values and are measured between each terminal and ground.

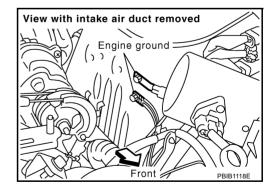
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running]	
89	В	Sensor ground	Warm-up condition	Approximately 0V
			Idle speed	
			[Ignition switch: ON]	
			Engine stopped	Less than 4.75V
			Selector lever: D	Less than 4.75V
98		Through position concer 2	Accelerator pedal: Fully released	
90	W	Throttle position sensor 2	[Ignition switch: ON]	
			Engine stopped	Mana 46 as 0.201/
			Selector lever: D	More than 0.36V
			Accelerator pedal: Fully depressed	
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V
			[Ignition switch: ON]	
			Engine stopped	More than 0.36V
			Selector lever: D	More than 0.36V
108	B/W	Throttle position concer 1	Accelerator pedal: Fully released	
100	D/ VV	Throttle position sensor 1	[Ignition switch: ON]	
			Engine stopped	Less than 4.75V
			Selector lever: D	Less than 4.75V
			Accelerator pedal: Fully depressed	

Diagnostic Procedure

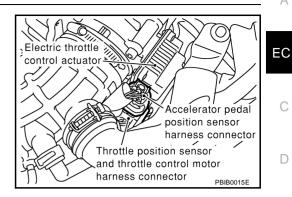
1. CHECK GROUND CONNECTIONS


1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

OK >> GO TO 2.

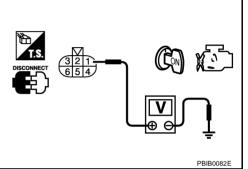

NG >> Repair or replace ground connections.

ABS002T7

$\overline{2}$. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.

Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK THROTTLE POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 5 and ECM terminal 89. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. >> GO TO 4. NG

4. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-30
- Harness for open or short between electric throttle control actuator and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

Н

5. CHECK THROTTLE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between the following;

ECM terminal 108 and electric throttle control actuator terminal 4,

ECM terminal 98 and electric throttle control actuator terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK THROTTLE POSITION SENSOR

Refer to EC-632, "Component Inspection".

OK or NG

OK >> GO TO 8. NG >> GO TO 7

7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Perform EC-44, "Idle Air Volume Learning".

>> INSPECTION END

8. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection THROTTLE POSITION SENSOR

ABS002T8

- 1. Reconnect all harness connectors disconnected.
- 2. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-44, "Throttle Valve Closed Position Learning".
- 4. Turn ignition switch ON.
- 5. Set selector lever to D position.
- Check voltage between ECM terminals 108 (TP sensor 1signal), 98 (TP sensor 2signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
108	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
98	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- PBIBO179E
- If NG, replace electric throttle control actuator and go to the next step.
- Perform <u>EC-44</u>, "Accelerator <u>Pedal Released Position Learning</u>".
- 9. Perform EC-44, "Throttle Valve Closed Position Learning".

10. Perform EC-44, "Idle Air Volume Learning".

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-18, "INTAKE MANIFOLD".

ABS002T9

EC

Α

С

D

F

Е

G

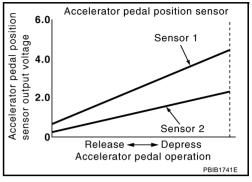
Н

Κ

L

M

PFP:18002


Component Description

ABS002TA

Electric throttle control actuator consists of throttle control motor, acceleration pedal position sensor, throttle position sensor, etc.

Accelerator pedal position sensor is connected to the accelerator pedal through the throttle drum and accelerator wire, and detects the accelerator pedal position by the throttle drum rotation angle.

accelerator pedal position by the throttle drum rotation angle. Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

ABS0031D

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1 ACCEL SEN 2*	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
	(engine stopped)Selector lever: D	Accelerator pedal: Fully depressed	Less than 4.75V
	Ignition switch: ON	Accelerator pedal: Fully released	ON
CLSD THL POS	(engine stopped)Selector lever: D	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differ from ECM terminal voltage signal.

On Board Diagnosis Logic

ABS002TB

NOTE:

If DTC P2138 is displayed with DTC P1229, first perform the trouble diagnosis for DTC P1229. Refer to $\underline{\text{EC-531}}$.

The self- diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2138 2138	Accelerator pedal position sensor circuit range/performance problem	Rationally incorrect voltage is sent to ECM compared with the signals from APP sensor 1 and APP sensor 2.	 Harness or connector (The APP sensor 1 and 2 circuit is open or shorted.) Accelerator pedal position sensor 1 and 2

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees

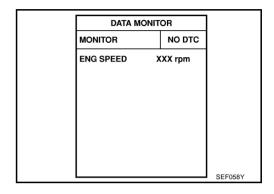
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

ABS002TC

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-637, "Diagnostic Procedure" .

WITH GST

Follow the procedure WITH CONSULT-II above.

EC

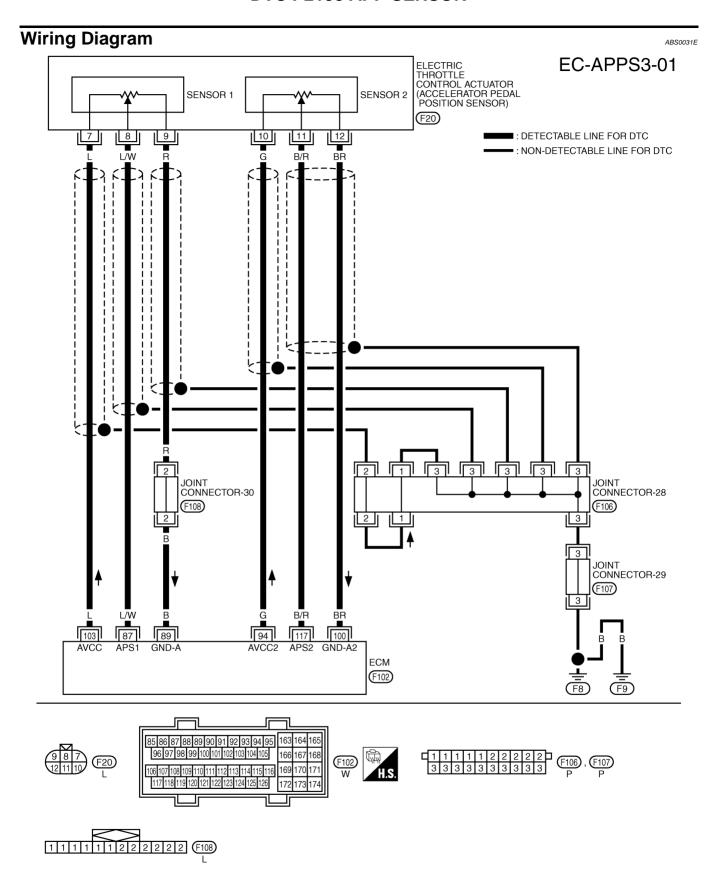
Α

С

D

_

F


G

Н

K

L

M

TBWA0286E

Specification data are reference values and are measured between each terminal and ground.

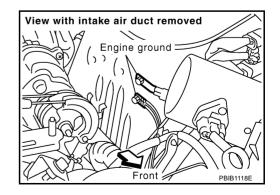
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
			[Ignition switch: ON]		
			Engine stopped	More than 0.36V	
			Selector lever: D	Wore than 0.30V	
87	L/W	Accelerator pedal position	Accelerator pedal: Fully released		
01	L/ VV	sensor 1	[Ignition switch: ON]		
			Engine stopped	Less than 4.75V	
			Selector lever: D	Less than 4.75V	
			Accelerator pedal: Fully depressed		
		Sensor ground	[Engine is running]		
89	В		Warm-up condition	Approximately 0V	
			Idle speed		
94	G	Sensor power supply (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 2.5V	
100	BR	Sensor ground (Accelerator pedal position sensor 2)	[Ignition switch: ON]	Approximately 0V	
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V	
			[Ignition switch: ON]		
			Engine stopped	Engine stopped	M
117 B/R			Selector lever: D	More than 0.18V	
	Accelerator pedal position sensor 2	Accelerator pedal: Fully released			
		[Ignition switch: ON]			
			● Engine stopped	Engine stopped	Loca than 2.27V
			Selector lever: D	Less than 2.37V	
			Accelerator pedal: Fully depressed		

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS


1. Turn ignition switch OFF.

2. Loosen and retighten two ground screws. Refer to <u>EC-141</u>, "Ground Inspection".

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

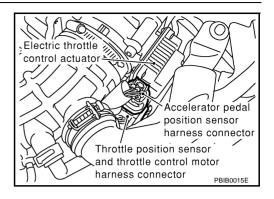
Α

D

Е

G

Н

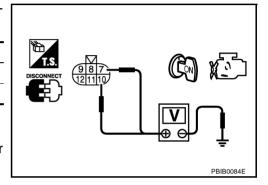

J

_

ABS002TD

$\overline{2}$. CHECK APP SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.


Check voltage between electric throttle control actuator terminals 7, 10 and ground with CONSULT-II or tester.

Electric throttle control actuator terminal	Voltage (V)
7	Approximately 5
10	Approximately 2.5

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK APP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between the following; electric throttle control actuator terminal 9 and ECM terminal 89, electric throttle control actuator terminal 12 and ECM terminal 100 Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

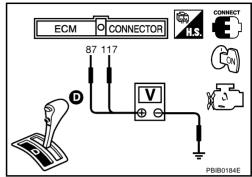
4. DETECT MALFUNCTIONING PART

Check the following.

- Joint connector-30
- Harness for open or short between ECM and electric throttle control actuator
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

Check harness continuity between the following;	
ECM terminal 87 and electric throttle control actuator terminal 8, ECM terminal 117 and electric throttle control actuator terminal 11. Refer to Wiring Diagram.	E
Continuity should exist.	
2. Also check harness for short to ground and short to power. OK or NG	
OK >> GO TO 6. NG >> Repair open circuit or short to ground or short to power in harness or connectors.	
6. CHECK APP SENSOR	
Refer to EC-640, "Component Inspection".	
OK or NG	
OK >> GO TO 8.	
NG >> GO TO 7.	
<u>_</u>	
7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator.	
7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform EC-44, "Accelerator Pedal Released Position Learning".	
 REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR Replace the electric throttle control actuator. Perform EC-44, "Accelerator Pedal Released Position Learning". Perform EC-44, "Throttle Valve Closed Position Learning". 	
7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform EC-44, "Accelerator Pedal Released Position Learning". 3. Perform EC-44, "Throttle Valve Closed Position Learning".	
 REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR Replace the electric throttle control actuator. Perform EC-44, "Accelerator Pedal Released Position Learning". Perform EC-44, "Throttle Valve Closed Position Learning". 	
7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform EC-44, "Accelerator Pedal Released Position Learning". 3. Perform EC-44, "Throttle Valve Closed Position Learning". 4. Perform EC-44, "Idle Air Volume Learning". >> INSPECTION END	
7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform EC-44, "Accelerator Pedal Released Position Learning". 3. Perform EC-44, "Throttle Valve Closed Position Learning". 4. Perform EC-44, "Idle Air Volume Learning". >> INSPECTION END 8. CHECK INTERMITTENT INCIDENT	
7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR 1. Replace the electric throttle control actuator. 2. Perform EC-44, "Accelerator Pedal Released Position Learning". 3. Perform EC-44, "Throttle Valve Closed Position Learning". 4. Perform EC-44, "Idle Air Volume Learning".	

Revision: 2004 October **EC-639** 2004 M45


M

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

ABS0031F

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Check voltage between ECM terminals 87 (APP sensor 1 signal), 117 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
87	Fully released	More than 0.36V
(Accelerator pedal position sensor 1)	Fully depressed	Less than 4.75V
117	Fully released	More than 0.18V
(Accelerator pedal position sensor 2)	Fully depressed	Less than 2.37V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-44, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-44, "Throttle Valve Closed Position Learning".
- 7. Perform EC-44, "Idle Air Volume Learning".

Removal and Installation ACCELERATOR PEDAL

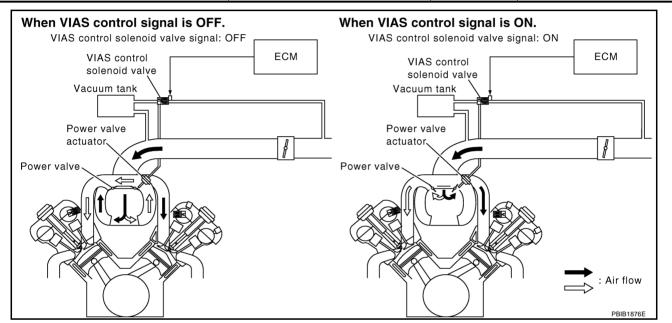
ABS002TE

Refer to ACC-2, "ACCELERATOR CONTROL SYSTEM".

VARIABLE INDUCTION AIR CONTROL SYSTEM (VIAS)

PFP:14956

Description
SYSTEM DESCRIPTION


ABS002TF

EC

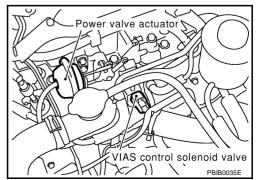
 D

M

Sensor	Input Signal to ECM	ECM function	Actuator
Mass air flow sensor	Amount of intake air		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position		
Ignition switch	Start signal	VIAS control	VIAS control solenoid valve
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed		
Engine coolant temperature sensor	Engine coolant temperature		

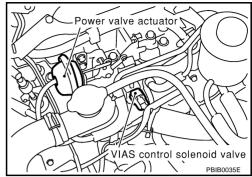
When the engine is running at low or medium speed, the power valve is fully closed. Under this condition, the effective suction port length is equivalent to the total length of the intake manifold collector's suction port including the intake valve. This long suction port provides increased air intake which results in improved suction efficiency and higher torque generation.

The surge tank and one-way valve are provided. When engine is running at high speed, the ECM sends the signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power valve actuator and therefore opens the power valve to two suction passages together in the collector.


Under this condition, the effective port length is equivalent to the length of the suction port provided independently for each cylinder. This shortened port length results in enhanced engine output with reduced suction resistance under high speeds.

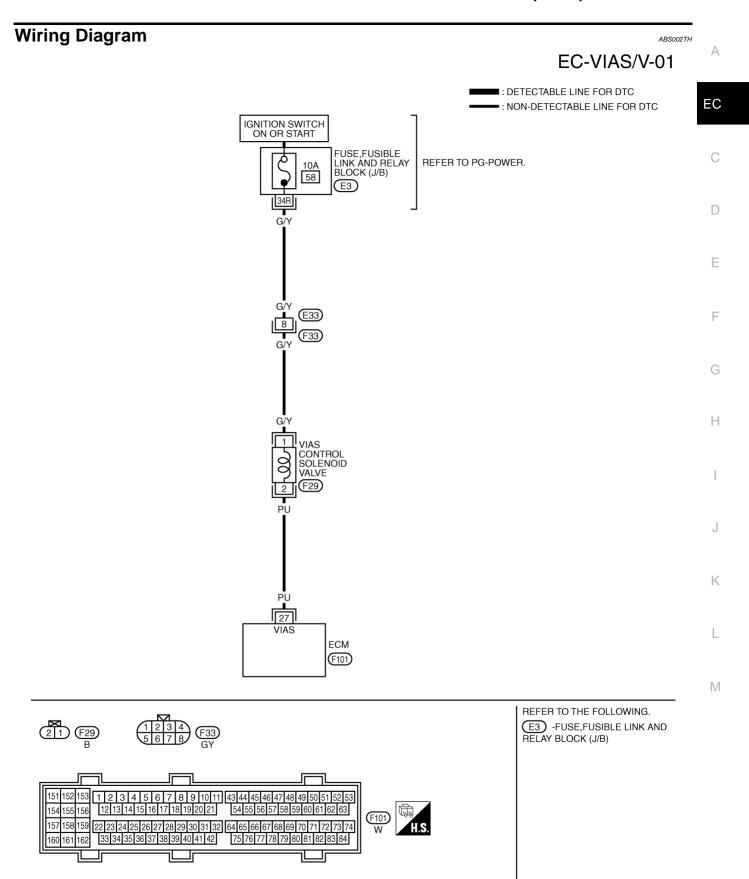
The power valve is always open regardless of the engine speed when selector lever position is in N or P.

COMPONENT DESCRIPTION


Power Valve

The power valve is installed in intake manifold collector and used to control the suction passage of the variable induction air control system. It is set in the fully closed or fully opened position by the power valve actuator operated by the vacuum stored in the surge tank. The vacuum in the surge tank is controlled by the VIAS control solenoid valve.

VIAS Control Solenoid Valve


The VIAS control solenoid valve cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is OFF, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator.

CONSULT-II Reference Value in Data Monitor Mode

ABS002TG

MONITOR ITEM	CONDITION		SPECIFICATION
VIAS S/V	Engine speed: Idle	Selector lever: P or N Engine speed: More than 5,000 rpm	ON
		Except above	OFF

TBWA0304E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

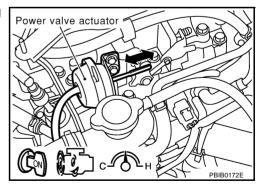
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	27 PU VIAS co		[Engine is running] ● Selector lever: P or N	0 - 1.0V
27		VIAS control solenoid valve	[Engine is running] • Selector lever: D	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] • Engine speed: Above 5,000 rpm	0 - 1.0V

Diagnostic Procedure

ABS002TI

1. CHECK OVERALL FUNCTION


(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Turn VIAS control solenoid valve "ON" and "OFF", and make sure that power valve actuator rod moves.

	ACTIVE TES	Т	Power valve actuator
VIA	AS SOL VALVE	OFF	
	MONITOR		
	ENG SPEED	XXX rpm	

W Without CONSULT-II

- 1. Lift up the vehicle.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Make sure that power valve actuator rod moves when changing the selector lever position to N and D alternately.

OK or NG

OK >> INSPECTION END
NG (With CONSULT-II)>>GO TO 2.
NG (Without CONSULT-II)>>GO TO 3.

2. CHECK VACUUM EXISTENCE

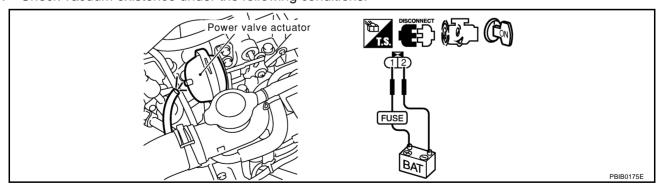
(II) With CONSULT-II

- 1. Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Start engine and let it idle.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Turn VIAS control solenoid valve "ON" and "OFF", and check vacuum existence under the following conditions.

AC	TIVE TEST	Power valve actuator
VIAS SOL	VALVE OFF	
1	MONITOR	
ENG S	PEED XXX rpm	
		PBIB0174E

VIAS SOL VALVE	Vacuum
ON	Should exist.
OFF	Should not exist.

OK or NG


OK >> Repair or replace power valve actuator.

NG >> GO TO 4.

3. CHECK VACUUM EXISTENCE

Without CONSULT-II

- I. Stop engine and disconnect vacuum hose connected to power valve actuator.
- Disconnect VIAS control solenoid valve harness connector.
- 3. Start engine and let it idle.
- 4. Apply 12V of direct current between VIAS control solenoid valve terminals 1 and 2.
- 5. Check vacuum existence under the following conditions.

Condition	Vacuum
12V direct current supply	Should exist.
No supply	Should not exist.

OK or NG

OK >> Repair or replace power valve actuator.

NG >> GO TO 4.

EC

D

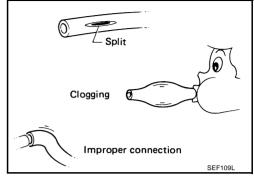
Е

G

Н

K

N


4. CHECK VACUUM HOSE

- 1. Stop engine.
- 2. Check hoses and tubes between intake manifold and power valve actuator for crack, clogging, improper connection or disconnection. Refer to EC-24, "Vacuum Hose Drawing".

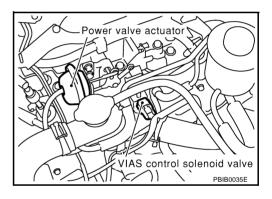
OK or NG

OK >> GO TO 5.

NG >> Repair hoses or tubes.

5. CHECK VACUUM TANK

Refer to EC-647, "Component Inspection".

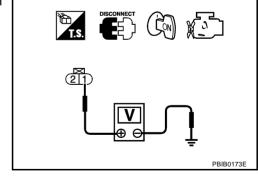

OK or NG

OK >> GO TO 6.

NG >> Replace vacuum tank.

6. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect VIAS control solenoid valve harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between VIAS control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E33, F33
- Fuse, fusible link and relay block (J/B) connector E3
- 10A fuse
- Harness continuity between fuse and VIAS control solenoid valve
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 27 and terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

>> GO TO 9. OK

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-647, "Component Inspection".

OK or NG

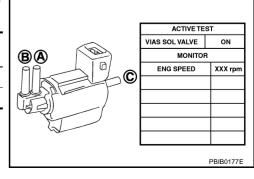
>> GO TO 10. OK

NG >> Replace VIAS control solenoid valve.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection VIAS CONTROL SOLENOID VALVE

(A) With CONSULT-II

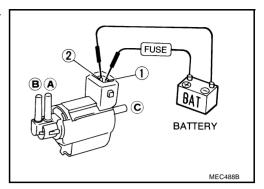
- 1. Reconnect harness connectors disconnected.
- Turn ignition switch ON.
- Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

Operation takes less than 1 second.

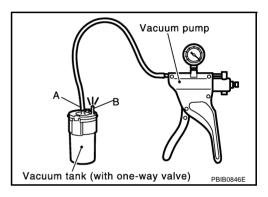
EC

F


Н

₩ith GST

Check air passage continuity and operation delay time under the following conditions.


Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

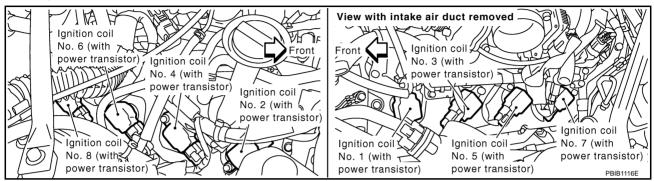
Operation takes less than 1 second.

VACUUM TANK

- 1. Disconnect vacuum hose connected to vacuum tank.
- 2. Connect a vacuum pump to the port A of vacuum tank.
- 3. Apply vacuum and make sure that vacuum exists at the port B.

Removal and Installation VIAS CONTROL SOLENOID VALVE

Refer to EM-18, "INTAKE MANIFOLD".


ABS002TK

IGNITION SIGNAL PFP:22448

Component Description IGNITION COIL & POWER TRANSISTOR

ABS002TL

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns ON and OFF the ignition coil primary circuit. This ON/OFF operation induces the proper high voltage in the coil secondary circuit.

EC

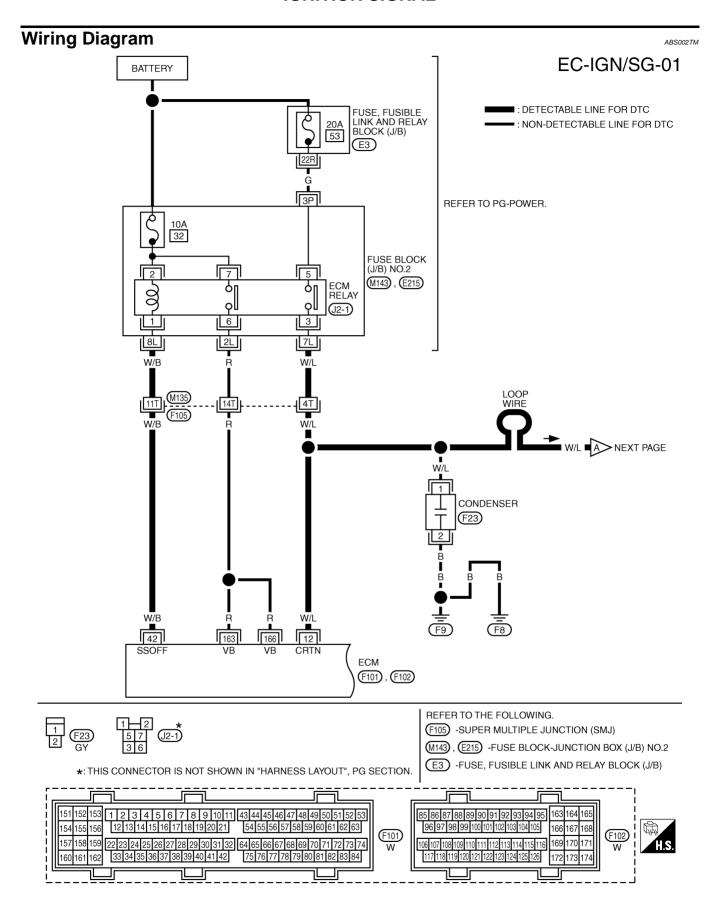
Α

С

D

Е

F


G

Н

J

<

L

TBWA0307E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

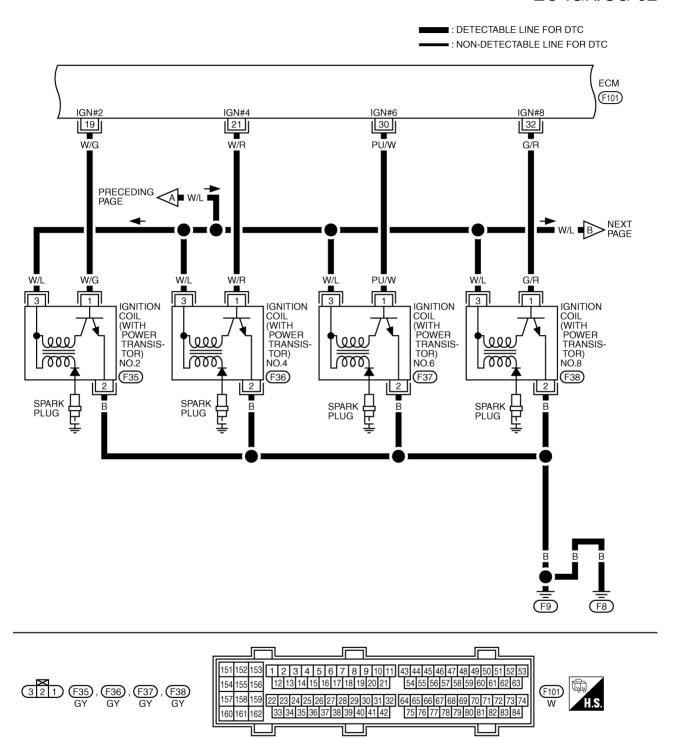
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12	W/L	Counter current return	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
42	W/B	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • A few seconds after turning ignition switch OFF	0 - 1.0V
		(Seii Siiut-Oii)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF BATTERY VOLTAG (11 - 14V)	BATTERY VOLTAGE (11 - 14V)
163 166	R R	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

EC

Α

С

Е


D

F

G

Н

EC-IGN/SG-02

TBWA0308E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by COSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
21 30	W/G W/R PU/W G/R	Ignition signal No. 2 Ignition signal No. 4 Ignition signal No. 6 Ignition signal No. 8	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle. [Engine is running] • Warm-up condition • Engine speed: 2,000 rpm.	0 - 0.1V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

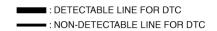
Α

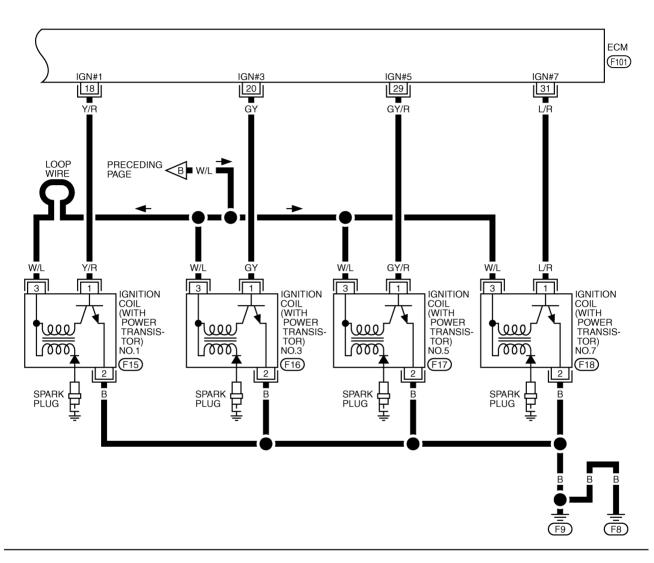
D

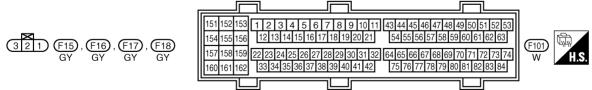
Е

F

G


Н


J


K

L

EC-IGN/SG-03

TBWA0309E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by COSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
18 20 29 31	Y/R GY GY/R L/R	Ignition signal No. 1 Ignition signal No. 3 Ignition signal No. 5 Ignition signal No. 7	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle. [Engine is running] • Warm-up condition • Engine speed: 2,000 rpm.	0 - 0.1V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK ENGINE START

Turn ignition switch OFF, and restart engine.

Is engine running?

Yes or No

Yes (With CONSULT-II)>>GO TO 2. Yes (Without CONSULT-II)>>GO TO 3.

No >> GO TO 4.

2. CHECK OVERALL FUNCTION

(P) With CONSULT-II

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 2. Make sure that each circuit produces a momentary engine speed drop.

OK or NG

OK >> INSPECTION END

NG >> GO TO 11.

ACTIVE TES	5 T	
POWER BALANCE		
MONITOR	<u> </u>	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

EC

Α

D

F

F

G

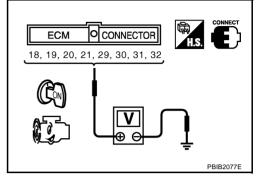
Н

ABS002TN

.

3. CHECK OVERALL FUNCTION

⋈ Without CONSULT-II


- 1. Let engine idle.
- 2. Read the voltage signal between ECM terminals 18, 19, 20, 21, 29, 30, 31, 32 and ground with an oscilloscope.
- 3. Verify that the oscilloscope screen shows the signal wave as shown below.

NOTE:

The pulse cycle changes depending on rpm at idle.

PBIB0044E

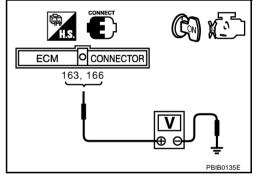
OK or NG

OK >> INSPECTION END

NG >> GO TO 11.

4. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 2. Check voltage between ECM terminals 163, 166 and ground with CONSULT-II or tester.

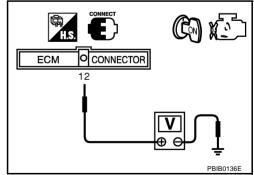

Voltage: Battery voltage

OK or NG

NG

OK >> GO TO 5.

>> Go to <u>EC-133, "POWER SUPPLY AND GROUND CIR-</u>CUIT".


5. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-II

Check voltage between ECM terminal 12 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 11. NG >> GO TO 6.

6. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Disconnect ECM relay.
- Check harness continuity between ECM terminal 12 and ECM relay terminal 3.

Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

View with dash side lower finisher removed ECM relay 11111 Fuel pump relay | Relays are located behind fuse block No. 2. PBIB0040

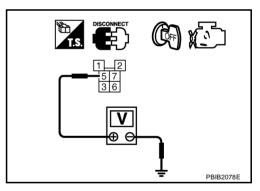
7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Fuse block (J/B) No. 2 harness connector M143
- Harness for open or short between ECM and ECM relay

>> Repair open circuit or short to ground or short to power in harness or connectors.

EC-657


8. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-IV

Check voltage between ECM relay terminal 5 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 9.

9. DETECT MALFUNCTIONING PART

Check the following.

- 20A fuse
- Fuse, fusible link and relay block (J/B) harness connector E3
- Fuse block (J/B) No. 2 harness connector E215
- Harness for open and short between ECM relay and fuse

>> Repair or replace harness or connectors.

10. CHECK ECM RELAY

Refer to EC-142, "Component Inspection".

OK or NG

OK >> GO TO 17.

Revision: 2004 October

NG >> Replace ECM relay.

D F

EC

Н

11. CHECK CONDENSER CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- Check harness continuity between the following; ECM terminal 12 and condenser terminal 1, condenser terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

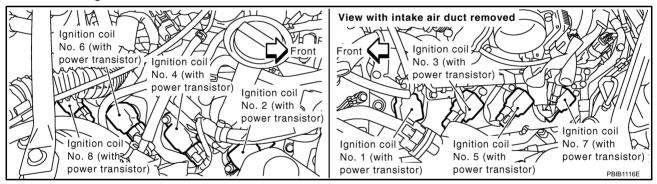
OK or NG

OK >> GO TO 12.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK CONDENSER

Refer to EC-659, "Component Inspection"

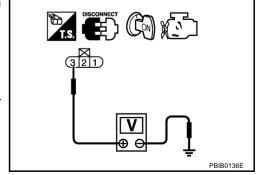

OK or NG

OK >> GO TO 13.

NG >> Replace condenser.

13. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-V

- 1. Reconnect all harness connectors disconnected.
- 2. Disconnect ignition coil harness connector.


- 3. Turn ignition switch ON.
- Check voltage between ignition coil terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 14.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

14. CHECK IGNITION COIL GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Check harness continuity between ignition coil terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 15.

NG >> Repair open circuit or short to power in harness or connectors.

15. CHECK IGNITION COIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminals 18, 19, 20, 21, 29, 30, 31, 32 and ignition coil terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 16.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

16. CHECK IGNITION COIL WITH POWER TRANSISTOR

Refer to EC-659, "Component Inspection".

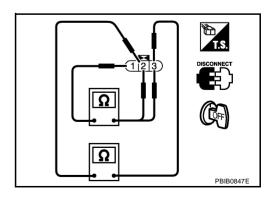
OK or NG

OK >> GO TO 17.

NG >> Replace ignition coil with power transistor.

17. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection IGNITION COIL WITH POWER TRANSISTOR

1. Turn ignition switch OFF.

- 2. Disconnect ignition coil harness connector.
- 3. Check resistance between ignition coil terminals as follows.

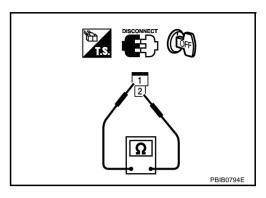
Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]	
1 and 2	Except 0 or ∞	
1 and 3	Except 0	
2 and 3		

EC

D

F

Н


J

ABS002TO

CONDENSER

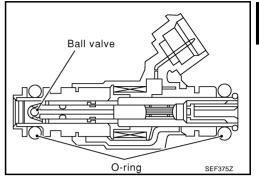
- 1. Turn ignition switch OFF.
- 2. Disconnect condenser harness connector.
- 3. Check resistance between condenser terminals 1 and 2.

Resistance: Above 1 M Ω [at 25°C (77°F)]

ABS002TP

Removal and Installation IGNITION COIL WITH POWER TRANSISTOR

Refer to EM-28, "IGNITION COIL".


INJECTOR CIRCUIT

PFP:16600

Component Description

ABS002TQ

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the ball valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.

CONSULT-II Reference Value in Data Monitor Mode

ABS002TR

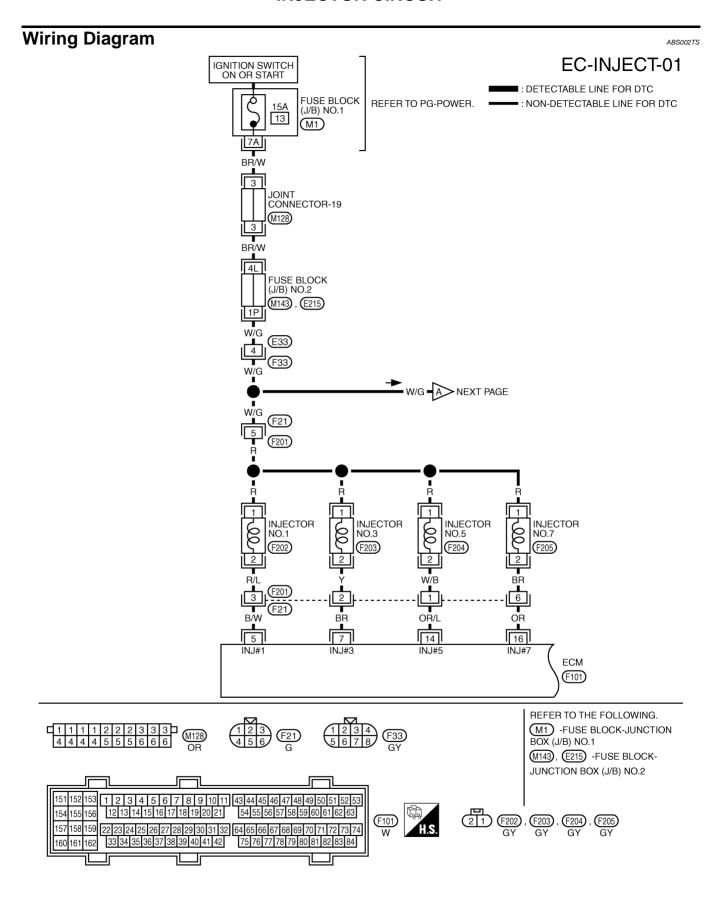
Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
INJ PULSE-B1 INJ PULSE-B2	See EC-128, "TROUBLE DIAGNOSIS - SPECIFICATION VALUE" .		
	Engine: After warming up	Idle	2.3 - 2.9 msec
B/FUEL SCHDL	Selector lever: P or N		
B/FUEL SCHUL	Air conditioner switch: OFF	2,000 rpm	2.3 - 2.9 msec
	No load		

EC

Α

D


Е

G

Н

K

L

TBWA0311E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
5 7	B/W BR	/ Injector No. 1 Injector No. 3	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle. 	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0042E
14 16	OR/L OR	Injector No. 5 Injector No. 7	[Engine is running] • Warm-up condition • Engine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ → 10.0V/Div 50 ms/Div PBIB0043E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

Α

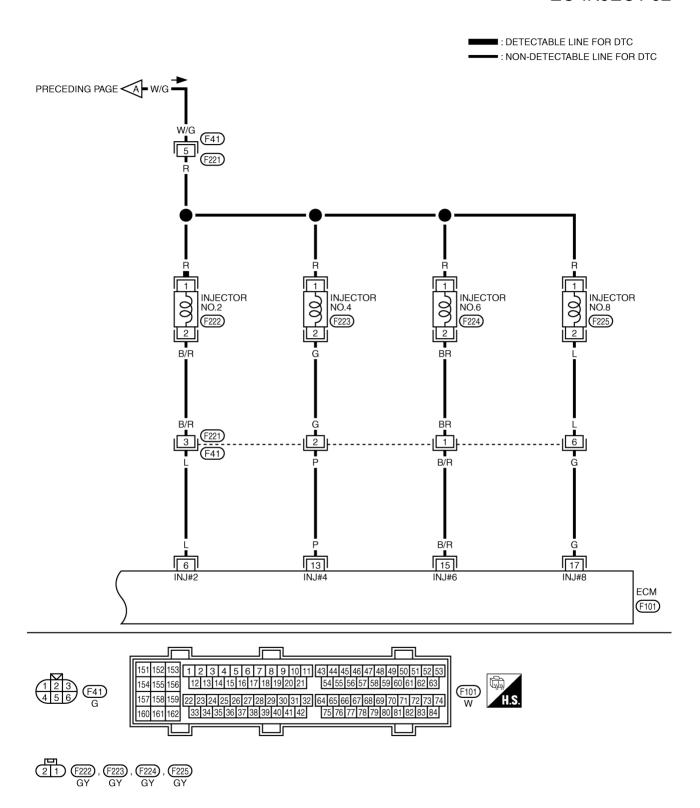
С

D

Е

G

F


Н

.

K

L

EC-INJECT-02

TBWA0312E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6 13 15 17	L P B/R G	Injector No. 2 Injector No. 4 Injector No. 6 Injector No. 8	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle. [Engine is running] • Warm-up condition • Engine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V) PBIB0042E BATTERY VOLTAGE (11 - 14V) PBIB0043E

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

ABS002TT

1. INSPECTION START

Turn ignition switch to START. Is any cylinder ignited?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

Α

EC

D

F

G

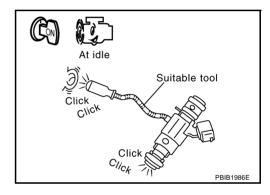
Н

1

K

L

2. CHECK OVERALL FUNCTION

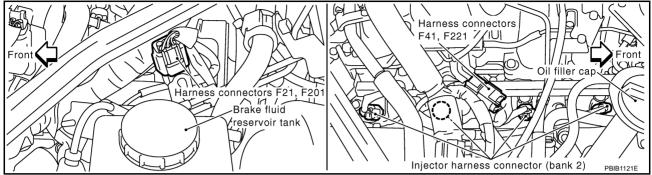

(I) With CONSULT-II

- 1. Start engine.
- Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TES	ST	
POWER BALANCE		
MONITOR	1	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

⋈ Without CONSULT-II

- 1. Start engine.
- 2. Listen to each injector operating sound. Clicking noise should be heard.


OK or NG

OK >> INSPECTION END

NG >> GO TO 3.

$\overline{3}$. CHECK INJECTOR POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- Disconnect harness connectors F21, F201 (bank 1) and harness connectors F41, F221 (bank 2).



- Turn ignition switch ON. 3.
- Check voltage between the following: harness connector F21 terminal 5 and ground, harness connector F41 terminal 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E33, F33
- Harness connectors F21, F201
- Harness connectors F41, F221
- Joint connector-19
- Fuse block (J/B) No. 1 connector M1
- Fuse block (J/B) No. 2 connectors M143, E215
- 15A fuse
- Harness for open or short between harness connector F21 and fuse
- Harness for open or short between harness connector F41 and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

F

Н

5. CHECK INJECTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between the following terminals. Refer to Wiring Diagram.

Harness connector	Terminal	ECM terminal
	3	5
F21	2	7
ΓΖΙ	1	14
	6	16
	3	6
F41	2	13
г 4 1	1	15
	6	17

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or shot to power in harness or connectors.

6. CHECK SUB-HARNESS CIRCUIT FOR OPEN AND SHORT

- Disconnect injector harness connectors.
- 2. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Harness connector	Terminal	Injector terminal
F21	5	1
ΓΖΙ	1, 2, 3, 6	2
F41	5	1
	1, 2, 3, 6	2

Continuity should exist.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK INJECTOR

Refer to EC-669, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace injector.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

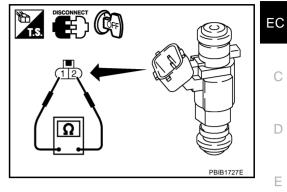
>> INSPECTION END

Component Inspection INJECTOR

ABS002TU

Α

С


D

Е

F

- 1. Disconnect injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

Resistance: $13.5 - 17.5\Omega$ [at $10 - 60^{\circ}$ C ($50 - 140^{\circ}$ F)]

ABS002TV

Removal and Installation INJECTOR

Refer to EM-31, "FUEL INJECTOR AND FUEL TUBE" .

G

Н

Κ

START SIGNAL

START SIGNAL PFP:48750

CONSULT-II Reference Value in Data Monitor Mode

ABS002TW

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$	$OFF \to ON \to OFF$

START SIGNAL **Wiring Diagram** Α EC-S/SIG-01 ■: DETECTABLE LINE FOR DTC ■: NON-DETECTABLE LINE FOR DTC EC BATTERY С D 1S W/R M15) Е REFER TO PG-POWER. IGNITION SWITCH (M70) ACC G Н FUSE BLOCK (J/B) NO.1 $\overline{M1}$ 12T SB 59 STSW ECM (F101) M REFER TO THE FOLLOWING. 5 3 4 2 1 M70 B (E205), (F105) -SUPER MULTIPLE JUNCTION (SMJ) M1 -FUSE BLOCK-JUNCTION BOX (J/B) NO.1

TBWA0313E

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53

 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63

33 34 35 36 37 38 39 40 41 42

START SIGNAL

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
59 SB	QB.	3 Start signal	[Ignition switch: ON]	Approximately 0V
	SB	Start Signal	[Ignition switch: START]	9 - 12V

Diagnostic Procedure

ABS002TY

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2. No >> GO TO 3.

2. CHECK OVERALL FUNCTION

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Check "START SIGNAL" in "DATA MONITOR" mode with CONSULT-II under the following conditions.

Condition	START SIGNAL
Ignition switch: ON	OFF
Ignition switch: START	ON

OK or NG

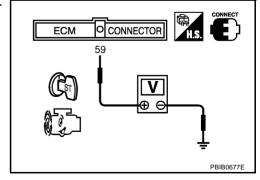
OK >> INSPECTION END

NG >> GO TO 4.

DATA MONIT		
MONITOR	NO DTC	
START SIGNAL CLSD THL POS AIR COND SIG P/N POSI SW	OFF ON OFF ON	
		PBIB0182E

3. CHECK OVERALL FUNCTION

⋈ Without CONSULT-II


Check voltage between ECM terminal 59 and ground under the following conditions.

Condition	Voltage
Ignition switch: START	Battery voltage
Other positions	Approximately 0V

OK or NG

OK >> INSPECTION END

NG >> GO TO 4.

4. CHECK STARTING SYSTEM

Turn ignition switch OFF, then turn it to START.

Does starter motor operate?

Yes or No

Yes >> GO TO 5.

No >> Refer to SC-9, "STARTING SYSTEM".

START SIGNAL

5. CHECK FUSE	А
Turn ignition switch OFF.	
2. Disconnect 10A fuse.	EC
3. Check 10A fuse. OK or NG	EC
OK >> GO TO 6.	
NG >> Replace 10A fuse.	С
6. CHECK START SIGNAL INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT	5
1. Reconnect 10A fuse.	D
2. Disconnect ECM harness connector.	
3. Disconnect ignition switch harness connector.	Е
 Check harness continuity between ECM terminal 59 and ignition switch terminal 5. Refer to Wiring Diagram. 	
Continuity should exist.	F
5. Also check harness for short to ground and short to power.	
OK or NG	G
OK >> GO TO 8. NG >> GO TO 7.	
7. DETECT MALFUNCTIONING PART	Н
Check the following.	
Harness connectors M135, F105	
Fuse block (J/B) No.1 connector M1	
 Harness for open or short between ignition switch and fuse block (J/B) No.1 Harness for open or short between ECM and fuse block (J/B) No.1 	J
Trainess for open or short between EGW and fuse block (5/B) No. 1	
>> Repair open circuit or short to ground or short to power in harness or connectors.	K
8. CHECK INTERMITTENT INCIDENT	
Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
>> INSPECTION END	

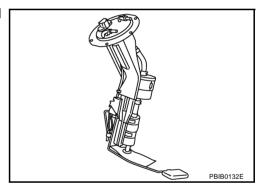
FUEL PUMP CIRCUIT

FUEL PUMP CIRCUIT

PFP:17042

Description SYSTEM DESCRIPTION

ABS002TZ

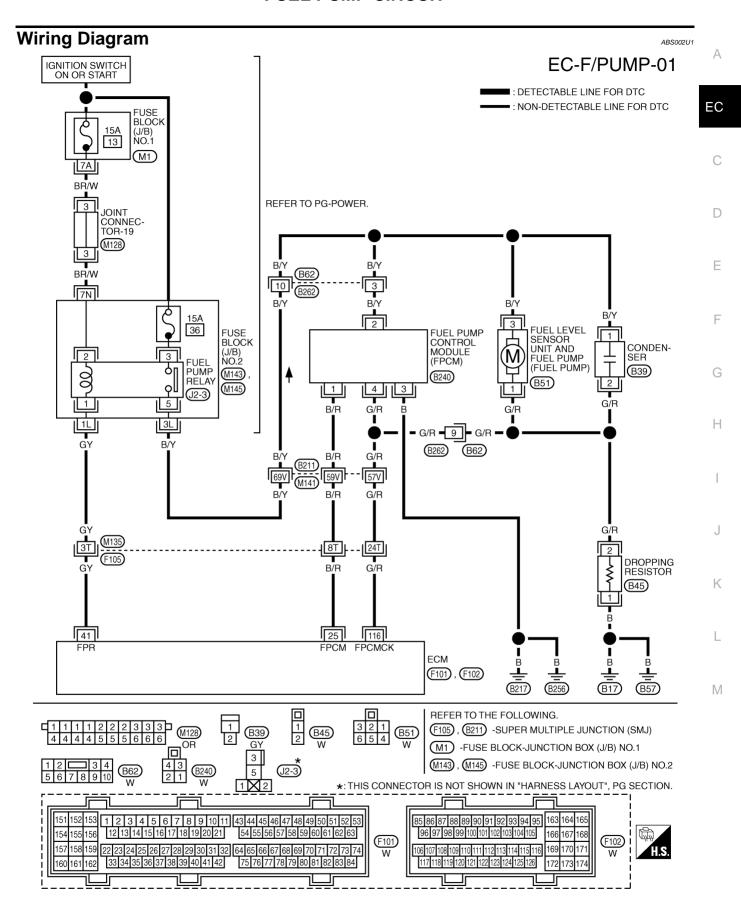

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Fuel pump control	Fuel pump relay
Ignition switch	Start signal		

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a engine speed signal from the crankshaft position sensor (POS), it knows that the engine is rotating, and causes the pump to operate. If the engine speed signal is not received when the ignition switch is ON, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation	
Ignition switch is turned to ON.	Operates for 5 seconds.	
Engine running and cranking	Operates.	
When engine is stopped	Stops in 1.5 seconds.	
Except as shown above	Stops.	

COMPONENT DESCRIPTION

The fuel pump with a fuel damper is an in-tank type (the pump and damper are located in the fuel tank).



CONSULT-II Reference Value in Data Monitor Mode

ABS002U0

Specification data are reference values.

MONITOR ITEM	IONITOR ITEM CONDITION	
FUEL PUMP RLY	For 5 seconds after turning ignition switch ONEngine running or cranking	ON
	Except above conditions	OFF

TBWA0314E

FUEL PUMP CIRCUIT

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

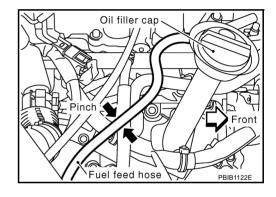
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
41	GY	Fuel pump relay	[Ignition switch: ON]For a few seconds after turning ignition switch ON[Engine is running]	0 - 1.0V
			[Ignition switch: ON] • More than a few seconds after turning ignition switch ON.	0 - 1.0V BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

1. CHECK OVERALL FUNCTION

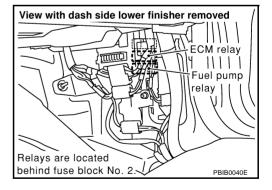
1. Turn ignition switch ON.


2. Pinch fuel feed hose with two fingers.

Fuel pressure pulsation should be felt on the fuel feed hose for 5 second after ignition switch is turned ON.

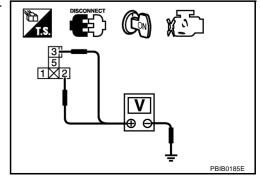
OK or NG

OK >> INSPECTION END


NG >> GO TO 2.

ABS002U2

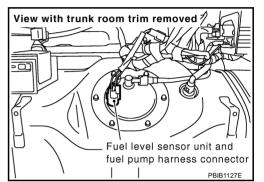
2. CHECK FUEL PUMP RELAY POWER SUPPLY CIRCUIT


- 1. Turn ignition switch OFF.
- 2. Disconnect fuel pump relay.
- 3. Turn ignition switch ON.

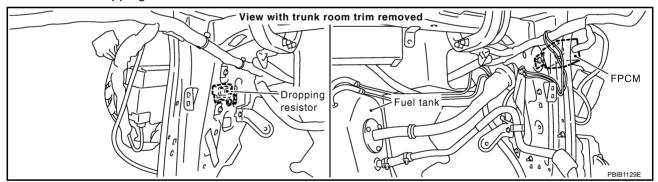
Check voltage between terminals 2, 3 and ground with CON-SULT-II or tester.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.


3. DETECT MALFUNCTIONING PART

Check the following.


- Fuse block (J/B) No. 1 connector M1
- Fuse block (J/B) No. 2 connectors M143, M145
- Joint connector-19
- 15A fuses
- Harness for open or short between fuse and fuel pump relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK FUEL PUMP POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect "fuel level sensor unit and fuel pump" harness connector.

3. Disconnect dropping resistor harness connector.

4. Check harness continuity between fuel pump relay terminal 5 and "fuel level sensor unit and fuel pump" terminal 3, "fuel level sensor unit and fuel pump" terminal 1 and dropping resistor terminal 2, dropping resistor terminal 1 and ground. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5. EC

D

F

G

Н

J

K

L

FUEL PUMP CIRCUIT

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B211, M141
- Harness connectors B62, B262
- Fuse block (J/B) No. 2 connectors M143, M145
- Harness for open or short between fuel pump relay and "fuel level sensor unit and fuel pump"
- Harness for open or short between "fuel level sensor unit and fuel pump" and dropping resistor
- Harness for open or short between dropping resistor and ground
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK FUEL PUMP RELAY OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminal 41 and fuel pump relay terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors M135, F105
- Harness for open or short between ECM and fuel pump relay
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK DROPPING RESISTOR

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> GO TO 9.

NG >> Replace dropping resistor.

9. CHECK FUEL PUMP RELAY

Refer to EC-679, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace fuel pump relay.

10. CHECK FUEL PUMP

Refer to EC-679, "Component Inspection".

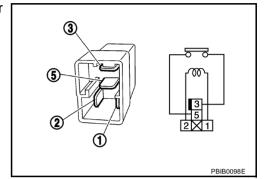
OK or NG

OK >> GO TO 11.

NG >> Replace fuel pump.

FUEL PUMP CIRCUIT

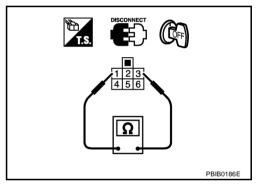
11. CHECK INTERMITTENT INCIDENT


Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

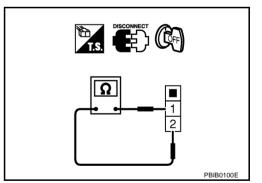
Component Inspection FUEL PUMP RELAY

Check continuity between fuel pump relay terminals 3 and 5 under the following conditions.


Conditions	Continuity
12V direct current supply between terminals 1 and 2	Yes
No current supply	No

FUEL PUMP

- 1. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- Check resistance between "fuel level sensor unit and fuel pump" terminals 1 and 3.


Resistance: $0.2 - 5.0\Omega$ [at 25° C (77°F)]

DROPPING RESISTOR

Check resistance between dropping resistor terminals 1 and 2.

Resistance: Approximately 0.9Ω [at 20° C (68°F)]

Removal and Installation **FUEL PUMP**

Refer to FL-3, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

EC

ABS002U3

C

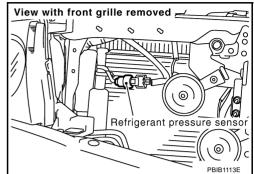
D

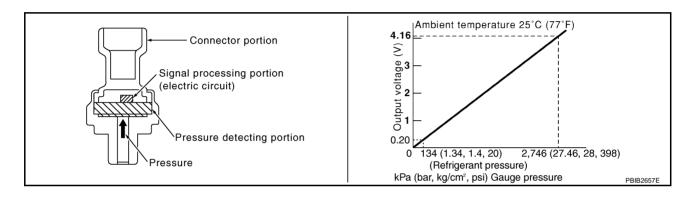
G

Н

M

ABS002114


REFRIGERANT PRESSURE SENSOR


PFP:92136

Component Description

ABS002U5

The refrigerant pressure sensor is installed at the condenser of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan system.

REFRIGERANT PRESSURE SENSOR

ECM (F102) JOINT CONNECTOR-28

(F106)

E49

2

Wiring Diagram

3

JOINT CONNECTOR-30

(F108)

GND-A

30002116

EC-RP/SEN-01

EC

С

Α

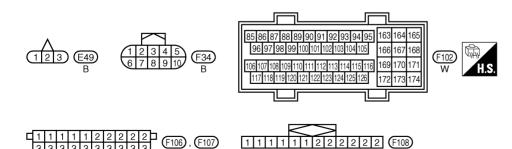
: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

3

JOINT CONNECTOR-29

(F107)

Е


D

G

Н

17

M

PDPRES

TBWA0315E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
88	Р	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower switch ON. (Compressor operates.) 	1.0 - 4.0V
89	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
103	L	Sensor power supply	[Ignition switch: ON]	Approximately 5V

Diagnostic Procedure

ABS002U7

1. CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION

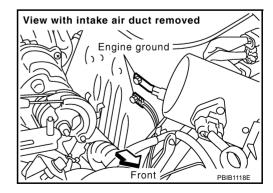
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn A/C switch and blower switch ON.
- Check voltage between ECM terminal 88 and ground with CON-SULT-II or tester.

Voltage: 1.0 - 4.0V

OK or NG

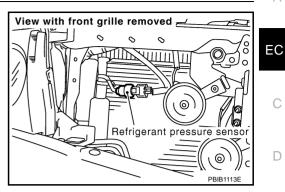
OK >> INSPECTION END

NG >> GO TO 2.


2. CHECK GROUND CONNECTIONS

- 1. Turn A/C switch and blower switch OFF.
- 2. Stop engine.
- 3. Turn ignition switch OFF.
- 4. Loosen and retighten two ground screws. Refer to EC-141, "Ground Inspection".

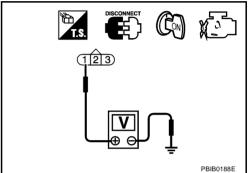
OK or NG


OK >> GO TO 3.

NG >> Repair or replace ground connections.

3. CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect refrigerant pressure sensor harness connector.
- 2. Turn ignition switch ON.



Check voltage between refrigerant pressure sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E34, F34
- Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between refrigerant pressure sensor terminal 3 and ECM terminal 89. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground or short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E34, F34
- Joint connector-30

Revision: 2004 October

- Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC-683

2004 M45

F

Н

7. CHECK REFRIGERANT PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 88 and refrigerant pressure sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E34, F34
- Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. REFRIGERANT PRESSURE SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect harness connector E34, F34.
- 2. Check harness continuity between harness connector F34 terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 11. NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E34, F34
- Harness for open or short between harness connector F34 and ground.
 - >> Repair open circuit or short to power in harness or connectors.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> Replace refrigerant pressure sensor.

NG >> Repair or replace.

Removal and Installation REFRIGERANT PRESSURE SENSOR

Refer to ATC-143, "Removal and Installation of Refrigerant Pressure Sensor".

ABS002U8

ELECTRICAL LOAD SIGNAL

PFP:25350

Description

ABS002U9

Α

EC

С

The electrical load signal (Headlamp switch signal, rear window defogger switch signal, etc.) is transferred through the CAN communication line from combination meter to ECM.

CONSULT-II Reference Value in Data Monitor Mode

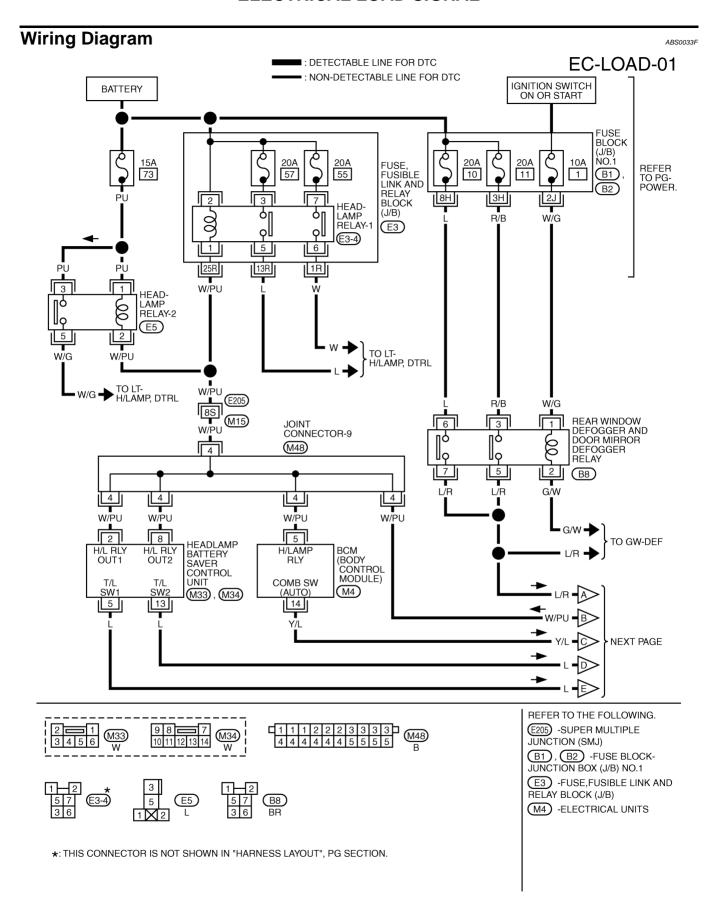
ABS0033E

Specification data are reference values.

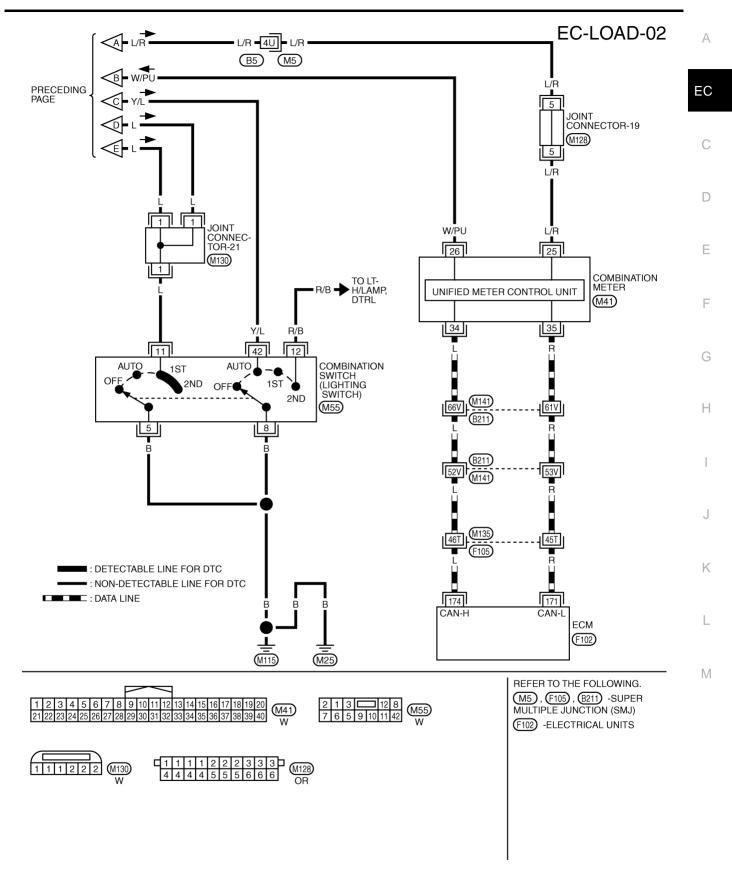
MONITOR ITEM	CONDITION		SPECIFICATION
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch is ON and/or lighting switch is in 2nd.	ON
		Rear window defogger switch is OFF and lighting switch is OFF.	OFF

Е

D


G

F

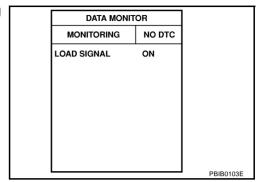

Н

K

L

TBWA0318E

TBWA0319E


Diagnostic Procedure

ABS002UA

1. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-I

- Turn ignition switch ON.
- 2. Connect CONSULT-II or GST and select "DATA MONITOR" mode.
- Select "LOAD SIGNAL" and check indication under the following conditions.

Condition	Indication
Rear window defogger switch: ON	ON
Rear window defogger switch: OFF	OFF

OK or NG

OK >> GO TO 2. NG >> GO TO 3.

2. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-II

Check "LOAD SIGNAL" indication under the following conditions.

Condition	Indication
Lighting switch: ON at 2nd position	ON
Lighting switch: OFF	OFF

DATA MONITOR MONITORING NO DTC LOAD SIGNAL ON PBIB0103E

OK or NG

OK >> INSPECTION END

NG >> GO TO 7.

3. CHECK REAR WINDOW DEFOGGER FUNCTION

- 1. Start engine.
- 2. Turn ON the rear window defogger switch.
- 3. Check the rear windshield. Is the rear windshield heated up?

Yes or No

Yes >> GO TO 4.

No >> Check rear window defogger circuit. Refer to GW-60, "REAR WINDOW DEFOGGER".

4. CHECK REAR WINDOW DEFOGGER INPUT SIGNAL CIRCUIT FOR OPEN OR SHORT

- Stop engine.
- 2. Disconnect rear window defogger and door mirror defogger relay.
- 3. Disconnect combination meter harness connector.
- Check harness continuity between rear window defogger and door mirror defogger relay terminals 5, 7 and combination meter terminal 25.
 Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6.

NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART Check the following. Harness connectors B5, M5 EC Joint connector-19 Harness for open or short between rear window defogger and door mirror defogger relay and combination meter >> Repair open circuit or short to ground or short to power in harness or connectors. 6. CHECK COMBINATION METER D Refer to DI-6, "COMBINATION METERS". OK or NG F OK >> GO TO 10. NG >> Replace combination meter. 7. CHECK HEADLAMP FUNCTION 1. Start engine. Turn ON the lighting switch at 2nd position. Check that headlamp high beams are illuminated. OK or NG Н OK >> GO TO 8. >> Check headlamp circuit. Refer toLT-6, "HEADLAMP (FOR USA)" or LT-44, "HEADLAMP (FOR NG CANADA) - DAYTIME LIGHT SYSTEM -" 8. CHECK HEADLAMP INPUT SIGNAL CIRCUIT 1. Stop engine. 2. Disconnect headlamp battery saver control unit harness connector. Disconnect BCM harness connector. 4. Disconnect combination meter harness connector. Check harness continuity between the following: headlamp battery saver control unit terminals 2, 8 and combination meter terminal 26, BCM terminal 5 and combination meter terminal 26. Refer to Wiring Diagram. Continuity should exist. M 6. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 10. NG >> GO TO 9. 9. DETECT MALFUNCTIONING PART Check the following.

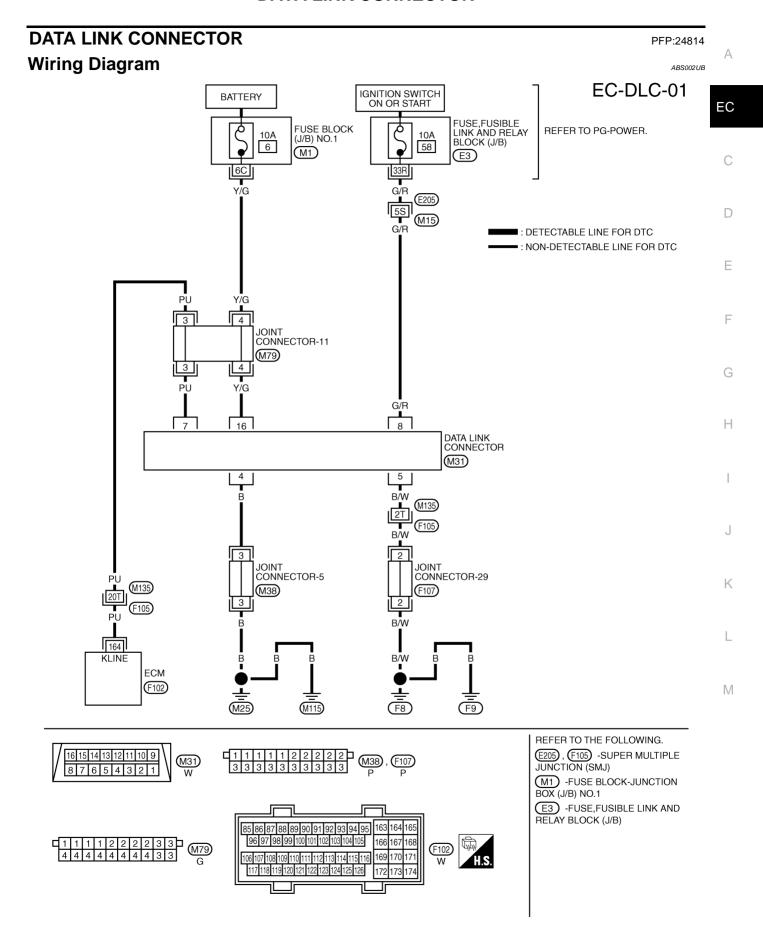
- Joint connector-9.
- Harness for open or short between headlamp battery saver control unit and combination meter.
- Harness for open or short between BCM and combination meter.
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK COMBINATION METER

Refer to DI-6, "COMBINATION METERS".

OK or NG

OK >> GO TO 11.

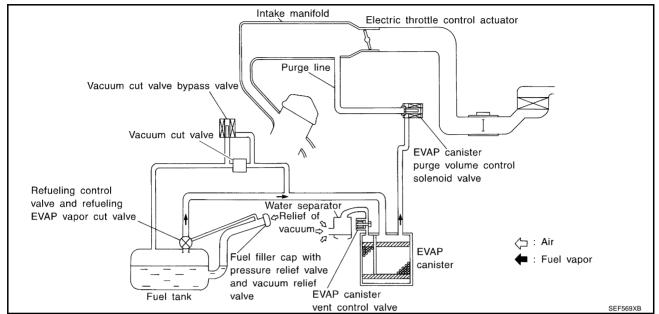

NG >> Replace combination meter.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-132, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

DATA LINK CONNECTOR

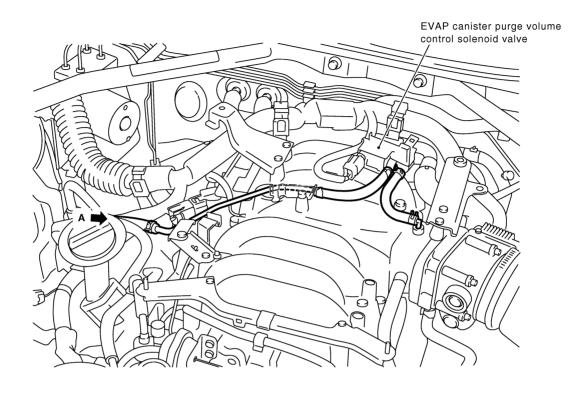

TBWA0316E

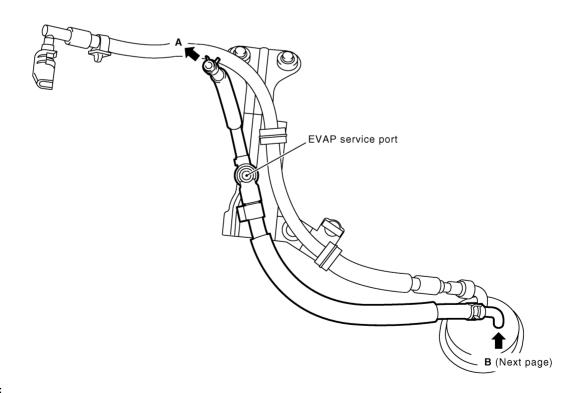
EVAPORATIVE EMISSION SYSTEM

PFP:14950

Description SYSTEM DESCRIPTION

ABS002UC


The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.


The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

EVAPORATIVE EMISSION LINE DRAWING

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

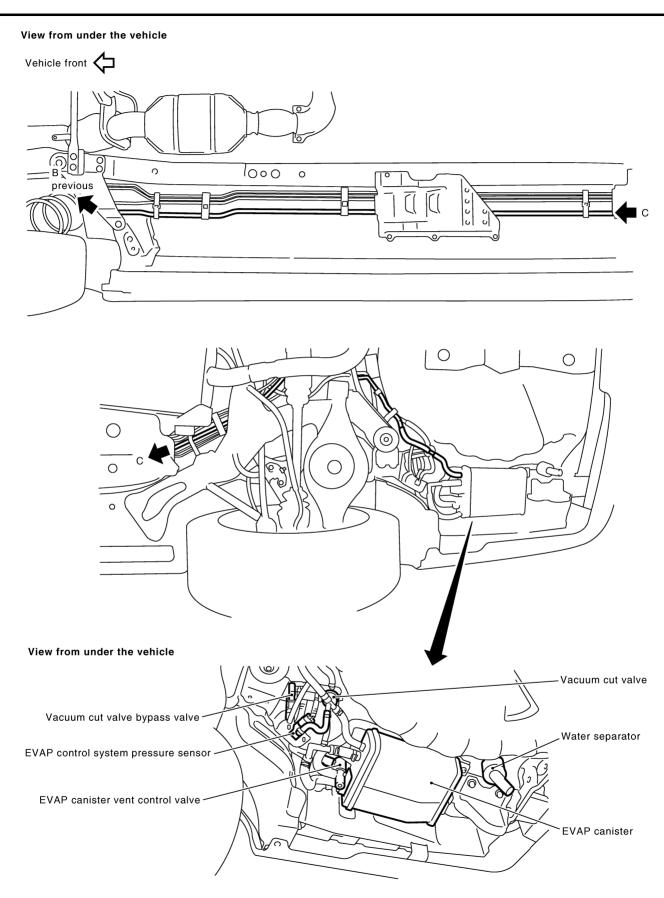
EC

Α

С

D

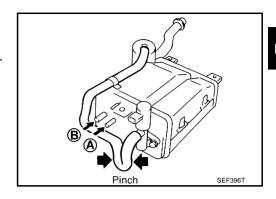
Е


F

G

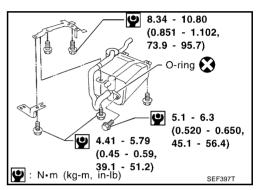
Н

M

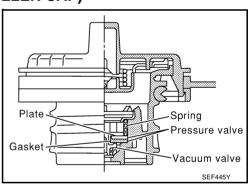

PBIB2444E

Component Inspection EVAP CANISTER

Check EVAP canister as follows:


- Pinch the fresh air hose.
- Blow air into port A and check that it flows freely out of port B.

Tightening Torque


Tighten EVAP canister as shown in the figure.

Make sure new O-ring is installed properly between EVAP canister and EVAP canister vent control valve.

FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FULLER CAP)

1. Wipe clean valve housing.

2. Check valve opening pressure and vacuum.

15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22 -

2.90 psi)

Vacuum: -6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -

0.87 to -0.48 psi)

3. If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

Refer to EC-584.

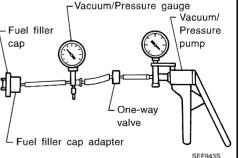
EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-342.

FUEL TANK TEMPERATURE SENSOR

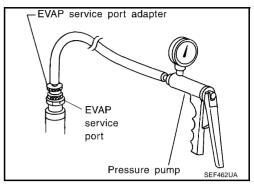
Refer to EC-283.

EC-695 Revision: 2004 October 2004 M45


EC

Α

ABS002UD


F

Н

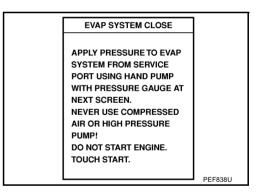
EVAP SERVICE PORT

Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

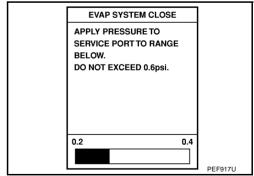
How to Detect Fuel Vapor Leakage

ABS002UE

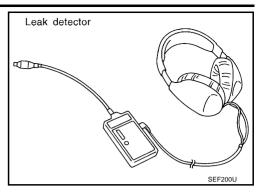
CAUTION:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

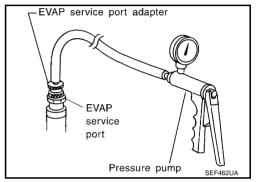
NOTE:


- Do not start engine.
- Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.

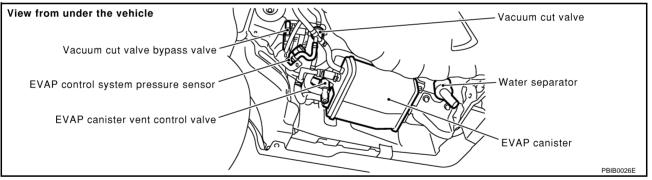
(P) WITH CONSULT-II


- 1. Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump and hose to the EVAP service port adapter.
- 3. Turn ignition switch ON.
- 4. Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-II.
- 5. Touch "START". A bar graph (Pressure indicating display) will appear on the screen.

- 6. Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7. Remove EVAP service port adapter and hose with pressure pump.



 Locate the leak using a leak detector. Refer to <u>EC-693</u>, "EVAP-ORATIVE EMISSION LINE DRAWING".



WITHOUT CONSULT-II

- 1. Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump with pressure gauge to the EVAP service port adapter.

3. Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP system.

- 4. To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- 5. Remove EVAP service port adapter and hose with pressure pump.
- Locate the leak using a leak detector. Refer to <u>EC-693, "EVAPORATIVE EMISSION LINE DRAWING"</u>.

Revision: 2004 October **EC-697** 2004 M45

EC

Α

D

Е

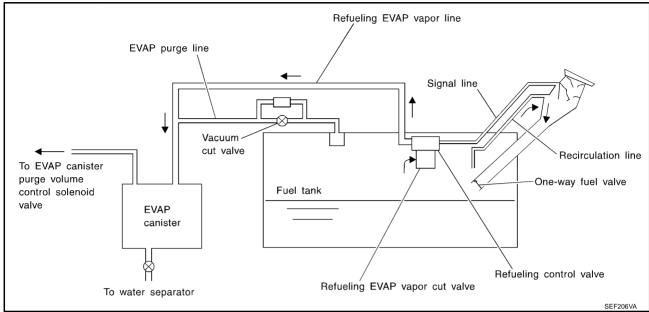
F

G

Н

J

K


L

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

PFP:00032

System Description

ABS002UF

From the beginning of refueling, the fuel tank pressure goes up. When the pressure reaches the setting value of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and refueling vapor line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- Put drained fuel in an explosion-proof container and put lid on securely.
- Release fuel pressure from fuel line. Refer to EC-46, "FUEL PRESSURE RELEASE".
- Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically.
 Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

Diagnostic Procedure

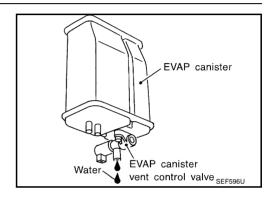
SYMPTOM: FUEL ODOR FROM EVAP CANISTER IS STRONG.

ABS002UG

1. CHECK EVAP CANISTER

- Remove EVAP canister with EVAP canister vent control valve attached.
- Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).

OK or NG


OK >> GO TO 2 NG >> GO TO 3.

2. Check if evap canister saturated with water

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3. No >> GO TO 6.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. CHECK WATER SEPARATOR

Refer to EC-701, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace water separator.

5. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and water separator for clogging or poor connection.

>> Repair or replace EVAP hose.

6. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-701, "Component Inspection".

OK or NG

OK

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

7. CHECK REFUELING CONTROL VALVE

Refer to EC-701, "Component Inspection".

OK or NG

OK >> INSPECTION END

NG >> Replace refueling control valve with fuel tank.

EC-699 Revision: 2004 October 2004 M45

EC

Α

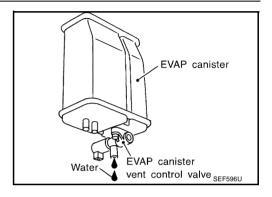
F

SYMPTOM: CANNOT REFUEL/FUEL ODOR FROM THE FUEL FILLER OPENING IS STRONG WHILE REFUELING.

1. CHECK EVAP CANISTER

- 1. Remove EVAP canister with EVAP canister vent control valve attached.
- 2. Weigh the EVAP canister with EVAP canister vent control valve attached. The weight should be less than 1.8 kg (4.0 lb).

OK or NG


OK >> GO TO 2. NG >> GO TO 3.

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3. No >> GO TO 6.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. CHECK WATER SEPARATOR

Refer to EC-701, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace water separator.

5. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and water separator for clogging or poor connection.

>> Repair or replace EVAP hose.

6. CHECK VENT HOSES AND VENT TUBES

Check hoses and tubes between EVAP canister and refueling control valve for clogging, kink, looseness and improper connection.

OK or NG

OK >> GO TO 7.

NG >> Repair or replace hoses and tubes.

7. CHECK FILLER NECK TUBE

Check signal line and recirculation line for clogging, dents and cracks.

OK or NG

OK >> GO TO 8.

NG >> Replace filler neck tube.

Revision: 2004 October **EC-700** 2004 M45

8. CHECK REFUELING CONTROL VALVE

Refer to EC-701, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace refueling control valve with fuel tank.

9. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-701, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

10. CHECK FUEL FILLER TUBE

Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.

OK or NG

OK >> GO TO 11.

NG >> Replace fuel filler tube.

11. CHECK ONE-WAY FUEL VALVE-I

Check one-way valve for clogging.

OK or NG

OK >> GO TO 12.

NG >> Repair or replace one-way fuel valve with fuel tank.

12. CHECK ONE-WAY FUEL VALVE-II

- 1. Make sure that fuel is drained from the tank.
- 2. Remove fuel filler tube and hose.
- Check one-way fuel valve for operation as follows.
 When a stick is inserted, the valve should open, when removing stick it should close.

Do not drop any material into the tank.

OK or NG

OK >> INSPECTION END

NG >> Replace fuel filler tube or replace one-way fuel valve with fuel tank.

One-way fuel valve Fuel tank

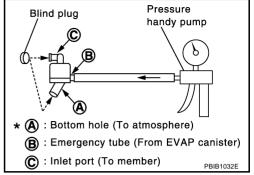
ABS002UH

EC

 D

F

Н

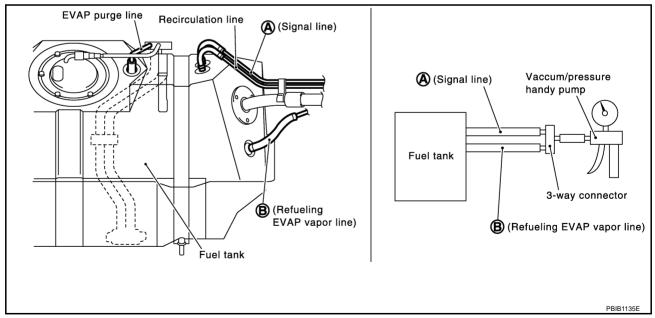

Component Inspection WATER SEPARATOR

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- Check visually for cracks or flaws in the hose.

- 4. Check that **A** and **C** are not clogged by blowing air into **B** with **A**, and then **C** plugged.
- 5. In case of NG in items 2 4, replace the parts.

NOTE:

• Do not disassemble water separator.

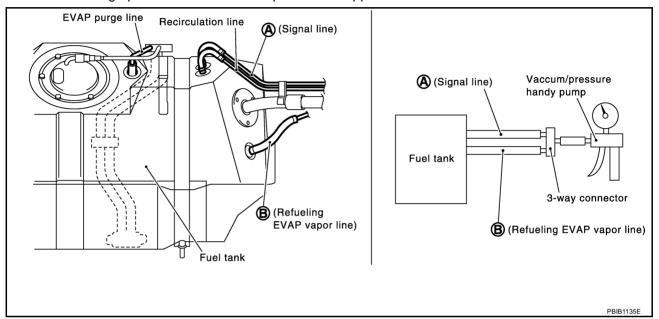

REFUELING EVAP VAPOR CUT VALVE

(P) With CONSULT-II

- 1. Remove fuel tank. Refer to FL-9, "FUEL TANK".
- 2. Drain fuel from the tank as follows:
- Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- Check refueling EVAP vapor cut valve for being stuck to close as follows.
 Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit.

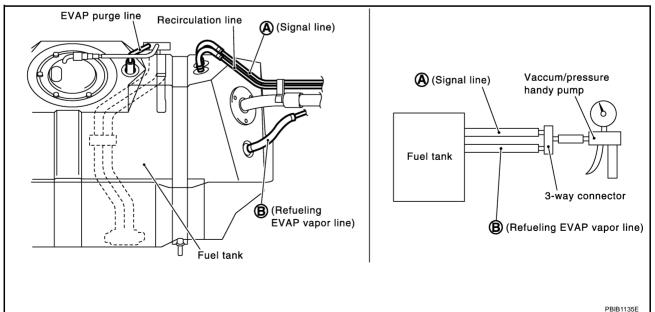
Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [–13.3 kPa (–100 mmHg, –3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.



With GST

- 1. Remove fuel tank. Refer to FL-9, "FUEL TANK".
- 2. Drain fuel from the tank as follows:
- Remove fuel gauge retainer.
- b. Drain fuel from the tank using a handy pump into a fuel container.
- 3. Check refueling EVAP vapor cut valve for being stuck to close as follows.


Blow air into the refueling EVAP vapor cut valve (from hose end B), and check that the air flows freely into the tank.

- Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose ends A and B using a suitable 3-way connector.
- b. Remove fuel gauge retainer with fuel gauge unit. **Always replace O-ring with new one.**
- c. Put fuel tank upside down.
- d. Apply vacuum pressure to both hose ends A and B [–13.3 kPa (–100 mmHg, –3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

REFUELING CONTROL VALVE

- Remove fuel filler cap.
- Check air continuity between hose ends A and B. Blow air into the hose end B. Air should flow freely into the fuel tank.
- 3. Blow air into hose end A and check there is no leakage.
- Apply pressure to both hose ends A and B [20 kPa (150 mmHg, 5.91 inHg)] using a pressure pump and a suitable 3-way connector. Check that there is no leakage.

EC

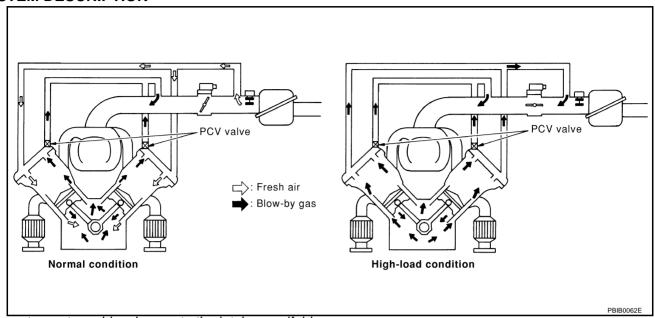
Α

D

G

Н

K


POSITIVE CRANKCASE VENTILATION

POSITIVE CRANKCASE VENTILATION

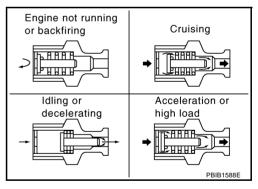
PFP:11810

Description SYSTEM DESCRIPTION

ABS002UI

This system returns blow-by gas to the intake manifold.

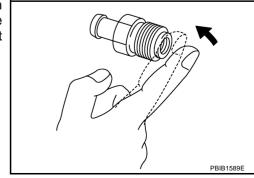
The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.


During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air. The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air passes

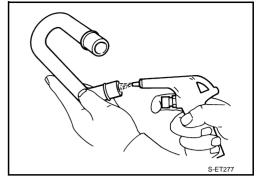
through the hose connecting air inlet tubes to rocker cover.

Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.


On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the air inlet tubes under all conditions.

ABS002UJ

Component Inspection PCV (POSITIVE CRANKCASE VENTILATION) VALVE


With engine running at idle, remove PCV valve ventilation hose from PCV valve; if the valve is working properly, a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet.

POSITIVE CRANKCASE VENTILATION

PCV VALVE VENTILATION HOSE

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

EC

С

D

Е

G

F

Н

Κ

L

SERVICE DATA AND SPECIFICATIONS (SDS)

SERVICE DATA AND SPECIFICATIONS (SDS)

PFP:00030

Fuel Pressure Regulator

ABS002UK

Fuel pressure at idling kPa (kg/cm² , psi)		Approximately 350 (3.57, 51)
Idle Speed and Ignition Timing		
Target idle speed	No load* (in P or N position)	650±50 rpm
A: 1:0: ONI	L.D. N. Sc.	700

Air conditioner: ON In P or N position 700 rpm or more

Ignition timing In P or N position 12°±5° BTDC

- · Air conditioner switch: OFF
- Electric load: OFF (Lights, heater fan & rear window defogger)
- Steering wheel: Kept in straight-ahead position

Calculated Load Value

ABS002UM

Condition	Calculated load value % (Using CONSULT-II or GST)	
At idle	14.0 - 33.0	
At 2,500 rpm	12.0 - 25.0	

Mass Air Flow Sensor

ABS002UN

Supply voltage	Battery voltage (11 - 14V)	
Output voltage at idle	1.2 - 1.8*V	
Mass air flow (Using CONSULT-II or GST)	2.0 - 6.0 g·m/sec at idle* 7.0 - 20.0 g·m/sec at 2,500 rpm*	

^{*:} Engine is warmed up to normal operating temperature and running under no-load.

Intake Air Temperature Sensor

Temperature °C (°F)

ABS002UO

Resistance $k\Omega$

 $5.0 - 7.0\Omega$

25 (77)	1.9 - 2.1	
Engine Coolant Temperature Sensor	Ai	BS002UP
Temperature °C (°F)	Resistance k Ω	
20 (68)	2.1 - 2.9	
50 (122)	0.68 - 1.00	
90 (194)	0.236 - 0.260	
Heated Oxygen Sensor 1	Al	BS002UQ
Resistance [at 25°C (77°F)]	3.3 - 4.0Ω	
Heated Oxygen sensor 2	AI	BS002UR

Resistance [at 25°C (77°F)] Fuel Temperature Sensor

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

Crankshaft Position Sensor (POS)

ABS002UT

Refer to EC-316, "Component Inspection".

^{*:} Under the following conditions:

SERVICE DATA AND SPECIFICATIONS (SDS)

Camshaft Position Sensor (PHASE) Refer to EC-321, "Component Inspection".		
Radiator coolant temperature °C (°F)	Resistance $k\Omega$	
-10 (14)	9.017 - 9.723	
20 (68)	2.437 - 2.595	
90 (194)	0.2416 - 0.2575	
110 (230)	0.1451 - 0.1522	
150 (302)	0.05927 - 0.06267	
Throttle Control Motor		ABS002UW
Resistance [at 25°C (77°F)]	Approximately 1 - 15 Ω	
Injector		ABS002UX
Resistance [at 10 - 60°C (50 - 140°F)]	13.5 - 17.5Ω	
Fuel Pump		ABS002UY
Resistance [at 25°C (77°F)]	0.2 - 5.0Ω	

Revision: 2004 October **EC-707** 2004 M45

Н

D

Е

F

G

J

Κ

SERVICE DATA AND SPECIFICATIONS (SDS)